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Green-function method for a mixed-valence Hamiltonian 
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A Green-function diagrammatic method is utilized to ca1cu1ate the occupation number of a nar­
row (j) band in a mixed-valence system. The method is a generalization of the Hubbard-1 approxi­
mation for a two-band Hamiltonian. The results at T=O K indicate the existence of an 
intermediate-valence state for finite hybridization between the bands, and abrupt transitions for 
values of G comparable to the half bandwidth of the conduction band. A metal-insulator transition 
is also obtained. 

I. INTRODUCTION . 

It seems well established that a two-hybridized-band 
model is able to describe the electronic properties of inter­
mediate valence systems.1 From the original work of 
Ramirez et al., 2 who explained the r-a transition of me­
tallic cerium, the idea that the valence transition is due to 
the raising of the 4f levei through the Fermi energy has 
been explored in many ways by several authors.3- 12 
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The effect of the hybridization, neglected in the initial 
model, 1•2 was taken in to account in the form of a virtual 
bound state3- 6 or as a coherent hybridization between the 
f and conduction bands.9- 12 Also, both the Coulomb f-f 
( U) and f -conduction-electron ( G) interactions were treat­
ed by different schemes, the existence of an abrupt transi­
tion driven by the !ater interaction, G, being a controver­
sial point. Actually, when G is treated in the mean-field 
approximation1•2•5•11 an abrupt transition between two 
valence states can occur. Some authors, using the alloy­
analogy approximation, also obtained a sharp transition, 10 

while some others obtained a continuous transition9 or no 
transition at all.7•8 Finally, recent results10- 12 indicate 
that no stable fractionary occupation of the f shell is ob­
tained in the metallic state. 

The Hamiltonian 2'0 can be exactly solved in terms of 
the operators 

To improve the analysis of the problem we utilize an 
approximate diagrammatic method recently developed13 

to calcula te the Green functions of the system. W e 
present here preliminary results for T =0 K. Finite­
temperature specific-heat computations are in progress. 

11. HAMILTONIAN AND GREEN FUNCTIONS 

Following Ref. 13, we separate the Hamiltonian into 
two terms: a local Hamiltonian 2'0, which includes ali 
the electronic correlations and can be solved exactly, anda 
hopping term, Kr. which takes into account the finite 
bandwidth of the conduction band and the hybridization 
contribution. 

Calling fi~ (d1~) the operator that creates an electron in 
an f (conduction) state, at the i site with spin a, the Ham­
iltonian reads 

where 

n[/ =nfu, 

nfu2 = 1-nfu , 
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The explicit expressions for the Green functions of the 
local Hamiltonian 71"0 are13 
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The Green functions of the full Hamiltonian are calculated by means of an approximate diagrammatic expan­
sion method, 13 and we obtain a Dyson equation: 

Gj(k,úJ) Gjd(k,úJ) 

G%f( k,úJ) G%( k,úJ) 

G6u(k,úJ) O 

o Ggu <iZ,(J)) 

where E-ris the Fourier transform of T;i: 

1 ~ T -ik·(R 1- R: 1) 
E-r= N ~ iie • 

i,j 

(9) 

The desired Green functions are obtained from Eq. (8). 
The results are 

[1-Ggu(E-+k -EB)JGtu 
Gu(k ) (lOa) 

f ,úJ = 1-V2G6uGgu -(E"k-EB)Ggu ' 

Gdu 
u(k ) 0 (lOb) 

Gd ,úJ = 1-V2GguGtu-(E-r-EB)Ggu 

It can be easily verified that in the case V=O, Gj(k,úJ) 
reduces to Gbu(úJ) (atomic limit) and G%(k,úJ) to 

-+ Gdu(úJ) 
Gu(k úJ)- O (11) 

d ' - 1 Gdu( E ) 
- O. Ek- B 

From Eqs. (10) we calculate the occupation numbers and 
the densities of states in the usual way. 

In spite of the fact that the calculation can be per­
formed in a rigorous self-consistent way, computing all 
mean values which appear in Eqs. (6), in this preliminary 
version we use the additional approximation 

( n{.;nf!nt-J) ~< n{:) ( n;df) ( n;~) (12) 

in order to simplify the numerical computations. 

III. RESULTS AND DISCUSSION 

We assume, to perform the calculation, a parabolic den­
sity of states for the unhybridized conduction band: 
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FIG. 1. Plot of (n1 ) vs E0, the energy ofthef-level referred 
to E8 =0, with V /W =0.2, U /W =2.0, and (a) G /W =0.0; (b) 
0.5, (c) 1.0, and (d} 1.5. 

o v Gj( k,úJ) Gjd( k,úJ) 

G%f(k,úJ) G%(k,úJ) 
(8) 

(13) 

The occupation number of the f and d shells are coll}­
puted as a function of the relative position of E 0 and EB. 
The variation of the parameter (E0 -EB )/W simulates 
the effect of the applied pressure. The Fermi levei is 
determined by a total number of two electrons per atom. 
This guarantees, for E0 + U <<EB- W, a semiconducting 
state, as is the case for Sm monochalcogenides at normal 
pressure. 

Two values of V and four values of G have been con­
sidered. In Fig. 1 we have plotted the occupation number 
of the f shell as a function of E 0 /W (with EB =0) with 
V /W =0.2 and G /W equal to (a) 0.0, (b) 0.5, (c) 1.0, and 
(d) 1.5. It is evident, from the figure, that there exists a 
valence transition, continuous in the cases a and b, and 
discontinuous in the cases c and d. One can see also, an 
intermediate occupation of the f levei in the case b and, 
more clearly, in c. This behavior corresponds, as we will 
see from the form of the densities of states, to the fact 
that when the conduction band begins to be filled, the resi­
due of the pole of G6u [Eq. (6a)] at E 0 +G is different 
from O. When E 0 +G enters the conduction band a 
second transition occurs to a value of ( n f) - 1. The inter­
mediate valence does not appear in the case a because of 
G =0, and in d because E 0 +G is too close to E 0 + U, and 
inside the conduction band for E 0 - -1. 

In Fig. 2, a greater value of the hybridization is con­
sidered: V /W =0.4. In this case, with the same values of 

FIG. 2. Same as Fig. 1, with V /W =0.4. 
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FIG. 3. Plot of the d (solid line) andf (dotted line) densities of states for V /W =0.4, U /W =2.0, and G /W = 1.0, for Eo= -3.0. 

G the discontinuous transitions do not occur, but the in­
termediate valence is still present. This suggests that the 
type of transition is determined by the ratio G /V. Onere­
marks that for G /W = 1 and 1.5, (n1 ) does not stabilize 
on the value 1, because the levei E 0 - -1 is strongly 
mixed with the conduction band. 

lt is also interesting to look at the plot of the densities 
of states. Because of the space available we have included 
here only three giaphs, for the case c of Fig. 2: 
V!W=0.4, GIW=1, and E 0 =-3.0 (Fig. 3, before the 
transition), E 0 = -1.6 (Fig. 4, the intermediate valence 
state) and E 0 = -1 (Fig. 5, (n1 ) -1}. 

Figure 3 shows the density of states for Eo= -3, that 

is, ( n 1 ) - 2. · There is a peak of the f density of states at 
E 0 + U- -1. The d states are separated in a main con­
duction band centered at E 8 + 2G = 2, and small peaks are 
centered at E8 +G and E 0 +U. Within the precision of 
the numerical computations, we have found the Fermi en­
ergy in the gap between E 0 + U and E0 + G; this result 
must be taken as an approximate one because it is well 
known that the Hubbard-I approximation leads to errors 
in the Fermi surfaces and to contradictions with the Lut­
tinger theroem.14- 16 (The Hubbard-1 approximation 
should give an insulating phase only in the atomic limit 
for (n1 )=2, that is, if V=O and E0 +U «E8 ). On the 
other hand, calculations performed by using the alloy-

FIG. 4. Same as Fig. 3 for E0 =- 1. 6. 
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FIO. S. Same as Fig. 3 for E0 = -1.0. 

analogy approximation, as those performed by Martin and 
Allen, 16 can give the correct insulating gap in this case, 
which corresponds to the "black" phase of SmS. 

When E 0 = -1. 6, a fraction of the f electrons in the 
levei E 0 + U have been transferred to the conduction band, 
as is shown in Fig. 4. Ali the peaks of the f density of 
states [Eq. (7a)] appear clearly, and E 0 and E 0 +G are 
below the conduction band, which is split into three sub­
bands, centered at E8 , E8 +G, and E8 +2G. The Fermi 
levei is in the second conduction subband, and the system 
is a metal, in disagreement, again, with Luttinger 
theorem. 15 

Finally, Fig. 5 exhibits the density of states for ( n f) - 1 
and E0 = -1. This is a special case, where there is 
electron-hole symmetry, and the Fermi levellies in a gap. 
This gap is due to the hybridization between the f levei at 
E 0 +U and the d band at E8 +G. However, small 
changes of E 0 drive the Fermi levei out of this gap. 

One notices that the f band is always separated into six 
narrow subbands, as in the atomic limit (V =0). (Howev­
er, with our choice for the numerical computation some 
leveis coincide.) That splitting is certainly true because of 
the small value of V, the hybridization energy. 

On the other hand, as our method is equivalent to the 
Hubbard-I approximation, 13·17 for small G the gaps be­
tween the conduction subbands at E8 ,E8 +G, and 
E B + 2G could be induced by the approximation. 14·17 
Anyway, they are not essential to our description, since 
the semiconducting phase gap is of different nature. For 

1J. M. Robinson, Phys. Rep. _li, 1 (1979). 
2R. RamÍrez, L. M. Fali~ov, and J. C. Kimball, Phys. Rev. B 2, 

3383 (1970); R. Ramirez and L. M. Falicov, ibid. J., 2425 
(1971). 

the metal-insulator transition we must take care also, as 
was mentioned, since in many cases the Hubbard-1 ap­
proximation does not give the correct Fermi surface. 14 A 
discussion of this point can be found in Ref. 16. 

IV. CONCLUSIONS 

We applied here a full Hubbard-1 treatment13•18 for a 
two-band Hamiltonian. This method reproduces the exact 
result in the atomic limit ( V= O, T;i = Tôij ); it is reason­
able to expect that the results are more accurate than in 
the Hartree-Fock theories previously utilized.2•5 In fact, 
an additional approximation was introduced, Eq. (12). 
However, we expect that the exact computation of the 
mean values which appear in Eq. (6) should not modify 
very much the present results. A full calculation, for 
T =O and T *O is now in course. 

Within this treatment we are able to obtain discontinu­
ous transitions for G > W and V =0.2W, and continuous 
ones, for V =0.4W. Ãlso an intermediate value of the oc­
cupation number of the f shell is found, and this value is 
stable over a wide range of values of the f levei energy, 
E 0 • This result could explain the stable fractionary 
valence of some Sm compounds. 
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