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The principles of statistical physics are applied to the study of cellular systems. Cells that fill a
flat surface are characterized by area, perimeter, and number of sides. A set of constraints is estab-
lished, taking into account the main features of the structure, from both geometrical and physical
points of view. The distribution functions of number of sides and area are calculated as well as the
thermodynamic parameters. The results are in agreement with available experimental and compu-

tational data.

I. INTRODUCTION

Cellular systems are macroscopic or microscopic ar-
rays of cells that fill space. Examples in two dimensions
are soap froths,' ® sections of metallurgical aggre-
gates,””° and biological tissues.'” !> These systems
present common features that arise mainly from the
geometry and topology of space filling,'? but they differ in
time evolution, which exhibits characteristics that are not
yet fully determined.

Two-dimensional soap froths can be constructed in
such a way that initially the bubbles are small and almost
all six-sided and the structure is fairly ordered.? As time
goes by, both the average size and the disorder in-
crease.>* However, recent experiments on soap froths
seem to indicate a final stable value for the second mo-
ment u, of the distribution in number of sides W,, of the
order of 1.5. Also, in the case of normal grain growth in
polycrystals this self-similar state happens for a typical
value of u,=2.4."* Numerical studies play an important
role in describing structure evolution and several works
have been performed, such as computer simulations of
the Potts model by Anderson and co-workers,!>1® soap
simulation by Weaire and co-workers,'” 7! and recent
numerical studies by Beenakker.°

One should bear in mind that soap-froth evolution and
normal grain growth in polycrystals have common
features but are not identical. Soap bubble walls can ad-
just themselves almost instantaneously to reduce inter-
face energy, and hence the evolution can be considered as
a succession of quasiequilibrium states. Polycrystals are
generally further from equilibrium than soap froths and
the boundary energy may depend on other factors, such
as the relative orientation of the microcrystals; also the
existence of pores (stable three-sided cells in soap froths)
and impurities may be an additional complication.

Several authors have applied with relative success the
methods of statistical physics (for a review see Ref. 14)
and particularly the maximum entropy formalism!®2!22
to describe the equilibrium states and the evolution of
these systems. In a previous paper we have presented a
derivation of the statistical mechanics of cellular systems
by considering an appropriate phase space®* and more re-
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cently we have obtained results that are in good agree-
ment with experiments, but that introduce constraints
not fully justified.*

Here we present the development of the statistical
mechanics of an ideal two-dimensional (2D) cellular
structure and concentrate on the study of a soap froth,
paying special attention to the distribution of number of
sides W, and of area ¢(a). In Sec. Il we discuss the ap-
plication of maximum entropy formalism and of the
methods of statistical mechanics to this problem; in Sec.
III we deduce from the physics of the system a set of con-
straints with a minimum number of a priori statements.
In the subsequent sections (Secs. IV-VI) the distribution
functions and thermodynamics variables are calculated
and, whenever possible, a comparison with experimental
and computational results is made.

II. STATEMENT OF THE PROBLEM

In the past decades the methods of statistical mechan-
ics (SM) have been applied to study problems from neural
networks®> and powders,? to self-organization and the
“big bang theory,” showing the strength and generality of
the formalism. Particularly, cellular systems in two di-
mensions have been studied from the point of view of
maximum entropy formalism of statistical mechanics?’ by
several authors.!321 724

A large number of systems, an ensemble, can be con-
structed with identical macroscopic conditions, the dy-
namics satisfying the principle of microreversibility;?!
i.e., as in a gas, cell transformations are reversible in mi-
croscopic scale, although the evolution of the system as a
whole may be irreversible. However, while SM methods
can be applied to these systems to obtain ensemble aver-
ages, that is, to calculate mean values of the interesting
parameters over a large number of “replicas” of the sys-
tem, time averages are more difficult to define. This is be-
cause in the case of soap froths the equilibrium may be
unstable; although a self-similar state is attained in
froths,® metallurgical grains,””® and computer simula-
tions.!”!® It is also not clear whether the system is ergod-
ic on a macroscopic scale, i.e., it may reach an equilibri-
um state, without exploring all the accessible states in the
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phase space.

With these precautions, it is possible to define the
phase space of the system. Obviously an ideal way
should be to characterize the system by the position,
length, and angle of every side of every cell. This descrip-
tion, although complete, is too cumbersome to handle.
Instead, a convenient set of parameters that contains the
essential information is then chosen:>>?* position, perim-
eter, area, and number of sides of each cell.

The number of sides » is relevant from both geometri-
cal and physical reasons,'® and the size of the cells is mea-
sured by perimeter and area. (The relation between them
gives the degree of “distortion” of the cell compared with
a regular polygon.) Also, as the cells must fill space and
the entropy should be extensive, the position of the cell is
included through the coordinates of its center of mass
(x,y). The generalized coordinates of the i cell can then
be written as (n;,p;,a;,x;,y;), such that we deal with a
5N-dimensional phase space.

The probability of finding the system at a given point
of the phase space is given by the density function®?

p=p(ng,.. HXy), (1)

which is normalized over the phase space.

As was stated before, the variables are not independent
(perimeter, area, and number of sides, for example, are
clearly related). The relation between the variables is
defined by a minimum set of constraints that will be dis-
cussed in what follows.
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III. CONSTRAINTS

In maximum entropy formalism, information about
macroscopic variables is introduced through constraints.
We separate two kinds of constraints, which we loosely
call geometrical and physical constraints.

A. Geometrical constraints

Geometrical constraints are those that every 2D cellu-
lar structure must fulfill to pave a flat surface without
pores or overlaps. These conditions are universal and in-
dependent of the physical nature of a particular struc-
ture. We list these constraints below.

1. The maximum area

There is a geometrical relation between the number of
sides n, perimeter p, and area a of a convex planar figure
with straight sides. It can be stated in two equivalent
ways: a minimum possible perimeter for a polygon with
fixed n, and a, or a maximum possible area for a polygon
with given p and n. We have chosen the second one and
the maximum area is

P2

o
amax(n,p)ZHcot; . (2)
This constraint is nonholonomic and is taken into ac-
count through a cutoff in area integrals. The sum opera-

tor over the phase space is then defined as
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where A is the total area covered by the cells. The sum
over N indicates that the total number of cells of the
structure is variable; we are dealing with a kind of
grand-canonical ensemble. '
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2. The expected number of cells { N ) and average area (a )

A given flat surface of area A4 can be filled with
different numbers N of cells, depending on the average
size of cells. The relation between the average number of
cells { N') and the average area per cell {a ) is obviously

(N)=EpN= 4)

A4
(a)’
where A is the total area. When periodic boundary con-
ditions are considered 4 and N go to infinity but {(a)
remains finite.

3. Euler condition

The vertices of cellular structures in equilibrium are
threefold."!* In this case, the Euler condition states that
in flat 2D cellular systems with an infinite number of con-
vex cells the average number of sides of a cell is six. This
constraint can be written as

N
Zp 3 n;=6(N), (5

i=1

where (N ) is the mean number of cells.

4. The average side length

There is a correlation between the number of sides of a
cell and of its neighbors given by the almost universal,
semiempirical Aboav-Weaire law.*'*> This condition is
due to the fact that every side is shared by two cells. This
geometrical feature of the cellular system—being a con-
nected array rather than a set of separate cells—
generates a correlation between the number of sides and
the perimeter. When no correlation is taken into ac-
count, the average perimeter of n-sided cells is indepen-
dent of n.23 As a consequence, the average side length of
n-sided cells varies as n " ; i.e., on the average, low-n-
sided cells have longer sides, and high-n-sided cells,
shorter ones. This is not observed, and also it is not pos-
sible to construct a homogeneous, connected array with
such a set of cells. Here we take the simplest choice of a
correlation between n and p that allows the array of cells
to be connected: a constant average side length [.2* This
condition is written as

N
Zp 3 (p;—m;1)8, ,=0. (6)
j=1

Also, as stated by Rivier and collaborators,'>?1:2228 5

linear correlation between the random variables increases
the entropy by reducing the number of linearly indepen-
dent Lagrange multipliers.

One can consider Eq. (6) as a constraint that provides
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the system with the information that only sets of cells
that can be connected should be considered as possible
microstates. Although in real systems / may depend on n,
different assumptions regarding the average side length of
n-sided cells would not increase the entropy.

B. Physical constraints

The physical constraints are the conditions that de-
scribe the dynamics of a cellular system. As these struc-
tures may be of very different nature, one cannot expect
that physical constraints should be as general as geome-
trical ones. For the particular cases of soap froths and
metallurgical aggregates, the energy is stored mainly in
the interfaces of the cells and hence the total perimeter is
minimized whenever possible. Also, very distorted cells,
when compared with regular polygons, are very expen-
sive in energy, because they have bigger perimeters for a
given area. Finally, we consider just isothermal, mass-
conserving transformations. Thermal energy of the total
matter inside the cells (gas or solid) will remain constant
and we shall not take it explicitly into account.

Assuming that the linear density of energy stored in
the interfaces is constant, the perimeter energy of a cellu-
lar system is proportional to the total perimeter of the
structure. While up to now only cells with straight sides
and perimeter p have been considered, it is well known
that soap-bubble walls present curvatures due to the
difference of pressure in adjacent bubbles. Grain boun-
daries are also curved. This happens because threefold
vertices are stable when the angles are 120°. Appendix A
presents an estimate of the average correction in side
lengths of n-sided cells due to the bending of the walls to
match the 120° angles. It results in longer perimeters

given by
=pn (7)
p=p sinf,, ’
where p* is the corrected perimeter and ,, is
m(n—6)
0,=——. 8
" 6n ®

As a function of the corrected p* the interface energy
term reads

6

n;

]q

N
Az 9)

sm9

and it differs from Eq. (8) of Ref. 23 just for the bending
correction. The expression is exact for regular polygons

N

V=S—aEp—a,Zp 3, +Cn;lln
j=1

p’s@ a

where the a,’s are Lagrange multipliers.
By maximizing ¥ we obtain the density function p:23
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and presents a very reasonable approximation for nonreg-
ular ones. One should observe that it gives a minimum of
energy for n =6, as is expected.

Also, the area of a cell with » sides and perimeter p can
vary from zero to a maximum value [the area of the regu-
lar polygon, Eq. (2)]. But flattened cells are too expensive
in energy, i.e., distortion energy is lowest for a regular
polygon and is very high when the area goes to zero.

An exact evaluation of this distortion energy depends
on the particularities of the system, and may be difficult
to handle. Taking into account the desired behavior—
i.e., the energy must be minimum for the regular cell and
go to large values for very distorted ones—we have
chosen a particularly simple form of the distortion ener-

gy,

E,=Cnln

—"‘a—} , (10)

that can be associated, in a crude estimate, to the iso-
thermal work to compress a cell from the maximum area
Qax tO an area a:

w=-—["

max

NRT

ax

a

The constant C should be of the order of
P, /nl~0.1(c /2). Equation (10) describes the cost in en-
ergy to smash a cell, and it is simple to deal with, but it is
easily verified that the detailed form of the distortion en-
ergy is not crucial, provided it behaves as mentioned
above.

The constraint associated to the total energy is then

da’'=Paln (11)

== |=(E). (12)

a

N 0
Ep ~§1 2p, _9 +Cn,;l In

"

IV. MAXIMUM ENTROPY FORMALISM

We define the entropy as?>?’

S=—EpIn(A’Nlp) , (13)

where A’ is a unit volume in the phase space equivalent to
the constant 4 defined in SM textbooks,?® N! is intro-
duced to correctly count the number of microstates, and
p is the density function defined in Eq. (1).

To maximize the entropy subjected to the constraints,
Egs. (3)-(6) and (12), one defines the function W, the gen-
eralized entropy,

N © N
—oyEp 3 nj—asEpN— 3 agn)Ep 3 (p,—

nl)8,,j,, ,
j=1 n=3 i=1

(14)
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P e P | TN T Z oy Z adn ey T 2R SOt 7 ’
where Z is the partition function and reads
_ N N N o e”j a’rinax
Z—:Wexp —oz5N—a4j§1 nj—jélas(nj)(pj—njl)—azjél P S0, +Cn;lln 7 (16)
J

Lagrange multipliers here do not have an immediate
physical meaning. They are determined through the con-
straint equations and the density function p. The gen-
eralized entropy W is a kind of thermodynamic potential,
such as the free energy. In that sense, the introduction of
a free energy and a temperature in Refs. 23 and 24 was
rather misleading. However, an order disorder transi-
tion?* still happens, but as a function of a,. While as is
related to the chemical potential, a, is associated with a
generalized temperature. In fact, a, is a measure of the
average perimeter and distortion energy per cell and it is

V. PARTITION FUNCTION
AND THERMODYNAMICAL POTENTIAL

The thermodynamical variables and the distribution
functions can be derived from the density function p and
the partition function Z. In what follows, we calculate Z,
the Lagrange multipliers, and the distribution functions.

A. Partition function

Using Eq. (16), the partition function can be written as

not the usual temperature because it does not control 2 e TN 4 NoN e ™ AQ 1
heat flux. The role of a, is to control energy flux between z= 2_‘40 ASNN —exp AS ’
two cellular systems at the same temperature in contact N=
with each other. where
J
0 . a
_ —ayn—ag(n)nl ood —a,(0/2)p(6, /sinb, ) —agn)p max _aynlCln(a/a,,) (18)
= e e .
Q n§3 ¢ fo p fo

The area integrals converge if and only if a,nlC > —1.
Then, as there is not an upper limit for / and n, and both
are positive, it must be

a,C>0. (19)
Also, by means of Egs. (4), (17), and (18), one arrives at
0
g n
=, 20
ag(n) nl % 2 sinf, 20)
and Q reduces to
B 2e313 w e—a4n~a2(a/2)n1(9n/sin0")n3kn on
="y Eg a,Cnl+1 ’
where ’
k, = Lcot — (22)
" 4n

and 6, is given by Eq. (8).
The Lagrange multiplier as is determined as a function
of a, and ay:
8]5 - e—a4n-—a2(a/2)nl(0n/sin0n )k,fns
81A3 2 a,Cnl+2 ’

n=3

as=3+In

(23)

and finally, a, and a4 are found by numerically solving
Egs. (4) and (12), which are rewritten as

1 30 _ (E)

T 0%, (N)’ (242)
_ 139 _
0 3a, 6{N) . (24b)

Formally, the problem is solved: through Egs. (24), the
values of a, and a, are numerically obtained, as a func-
tion of (N) and (E), and from Eq. (23) as is deter-
mined. The partition function can then be calculated, as
well as other thermodynamic variables, as shown in the
following.

B. Distribution functions

We present the distribution functions related to the
random variables n, p, and a. These distribution func-
tions explain the role of the Lagrange multipliers a, and
a, as well as the character of the differences related to
configurations with different «, of the cellular system.

1. Reduced probability distribution f(n,p,a)

The reduced probability distribution f(n,p,a) is the
probability of finding a cell with » sides, perimeter p and
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area a in an equilibrium configuration of the cellular sys-
tem. Itis

1 a,Cnl
f(n,p,a)=—
Q max
0
[ n 3p
>< p— pu— —_— ———— —
exXp | —aun—ays nl snd,  nl (25)

for a =a,,, and zero otherwise.

In Eq. (25) Q is the reduced partition function defined
in Eq. (21) and a,, is given by Eq. (2). As far as we
know, this function has not been measured for any natu-
ral system, but is very useful in obtaining other distribu-
tion functions and thermodynamic quantities that can be
compared with experiments and numerical simulations.

2. Relative number of n-sided cells, W,

The relative number of n-sided cells, W,,, can easily be
obtained from Eq. (25) by integrating over area and per-
imeter:

6
3 g n
k —aun—a,—nl
o . n’kyexp | —agn—ay—n ey -
"8, a,Cnl+1 ’
where
o 3k,exp | —ayn —azg—nl sin':9
S = .
! 53 a,Cnl +1 @7

is the normalization factor and k,, is given by Eq. (22).

A relevant quantity is the second moment u, of W,,
which measures the dispersion of n around the average
value {n ) =6. Itis calculated as

=3 (n—6>’W,, (28)
n=3
and is univocally connected to the values of a,, which are
associated with the energy of the system: there is a one-
to-one relation between the topological disorder u, and
the energy of the froth. We shall come back to this point
later.

Figure (1) shows plots of W, versus n [Eq. (26)] and a
comparison with experimental results for soap froths by
Aboav* and by Stavans and Glazier.® The theoretical and
experimental results show the same qualitative behavior
and are in good agreement for four different values of u,,
including the long-term self-similar state proposed in Ref.
3.

For a,=0 the topological disorder is maximum at
1,=5.98, a result obtained in previous calculations.?*
This maximum value depends on the assumption of the
average side-length dependence on n [Eq. (6)], and on
u,—0 when a,— o, as expected.

3. Area distribution ¢(a)

The area distribution ¢(a) is defined from the reduced
probability f(n,p,a) as follows:
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FIG. 1. Relative number of n-sided cells, W,, as a function of
n. The solid lines are the theoretical curves. The dots in (a)-(c)
refer to experimental data for soap froths by Aboav (Refs. 4 and
5) and in (d) the triangles correspond to the experiments by Sta-
vans and Glazier (Ref. 3) for a soap froth after an evolution time
of 29.48 h. Observe the shift in the maximum of the distribu-
tion from n =6 to 5 as u, increases, in both theory and experi-
ments.

Ha)= 3 fwdpfpzk"da'ﬁ(a—a’)f(n,p,a'). (29)
n=3 Y Y
Hence the average area of the cells is
» 41* Sy
= =—— 30
n=[ "daagla)==3 5 (30)
where S, is given by Eq. (27) and S, is
6
572 _ —g. T n
L kiexp | —asn —a, 2 nl sin6, N
SZ",,% (a,Cnl+2) - 8D

A plot of {a) versus u, is presented in Fig. 2. The
average area is fairly constant for u, <4 and decreases
when p, approaches its maximum value 5.98. When {a )
decreases, the total number of cells and the total perime-
ter increase, i.e., the energy of interface increases.

Figure 3 shows ¢(a/{a)) versus a/{a). This distri-
bution is obtained by numerically performing first the
perimeter integral and then summing from n =3 to 25 for
the same values of u, of Fig. 1 (dashed lines). The solid
line stands for the experimental data by Glazier et al.*°
for a froth with an evolution time of 3163 min and
i,~1.5 that corresponds, according to the authors, to
the self-similar state. Earlier area distributions show
maxima that shift towards lower values of a /{a ). The
maxima in the theoretical curves are roughly at the same
position because they correspond to the maximum entro-
py (“equilibrium”) state; however, the height of the peaks
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FIG. 2. Average area a), in units of /? vs the topological
disorder u,. {a) decreases if u,>3.0, increasing the mean
number of cells { N) and also the perimeter energy per area.

decreases when p, decreases because the probability of
finding more regular cells with higher values of a /{a)
increases. In the experimental steady state the average
area is continuously growing but the distribution func-
tions are self-similar. In the present formulation this can
be described by allowing the average length / to increase
in time: the theoretical distribution ¢(a/{a)) remains
constant, in agreement with the experiments. In this
sense the self-similar state can be compared to the
theoretical equilibrium (maximum entropy) state. Final-
ly, the experimental data regarding area distributions are
much less reliable than other measured quantities,31 and

¢ (a/ay)
2.00r

160/ 285
1.20
080

040

OOO 1 1 1 1 ul
000 0.20 0.40 0.60 0.80 100

FIG. 3. Relative area distribution ¢(a/{a)) vs a/{a). The
dashed lines are theoretical curves for different values of u, and
the solid line refers to the experimental data by Glazier et al.
(Ref. 30) for an evolution time of 3163 min and u,~1.5.
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also the value of C in Eq. (11), which plays an important
role in the behavior of ¢(a/{a)), is only a rough esti-
mate, as can be seen in Appendix B. Taking these facts
into account, the results are in excellent agreement with
experiments.

C. The average area of n-sided cells (a, )

The average area of n-sided cells is easily obtained
from the reduced probability distribution

* (=] amax
(a,)=3 fo dpf0 da f(n',p,a)as,

n'=3
a,Cnl+1
—4722 2
=4 . 2
S Cnl 2 <" 52

Equation (32) is plotted in Fig. 4; it is clear that there is
not a significant dependence of {a,) on the value of a,.
Figure 4 shows a good agreement of the theoretical
curves with the experimental results by Glazier, Gross,
and Stavans.?

Lewis’s hypothesis®? states that {a, )= 4 +B,,, where
A and B are undetermined constants. Clearly, Eq. (32) is
not a linear relation. Nevertheless, for low topological
disorder (values of p,=<3.0), the structure shows mainly
bubbles with 3 <n <12. In this region, the error bars of
experimental results do not allow one to decide between
Lewis’s hypothesis or Eq. (32). Also, the fraction
{ag)/{a)=1, which has been suggested as a test for
Lewis’s relation,>®> when calculated through Eq. (32),
varies in the range 0.9>(a¢)/{a)<1. We conclude
that it is very difficult to decide between Lewis’s law and
Eq. (32) from experimental data: they are approximately
equal for values of u, <3.0.

5001

FIG. 4. Normalized averages of n-sided cells vs n. The solid
lines correspond to theoretical calculations with different values
of u, (from 0.62 to 2.85). The points and error bars are the ex-
perimental data for soap froths by Glazier, Gross and Stavans
(Ref. 2).
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D. Energy

Using the density function we calculate the average en-
ergy per cell:

(E ) n g On

(N) Cl<a2Cnl+1 >+ 2 l<" sine,,> : (33
The first and second terms in Eq. (33) are, respectively,
the average distortion and perimeter energy per cell. We
have plotted separately these terms as well as (E ) /(N )
as functions of the topological disorder u, for
C=0.1(c/2) in Fig. 5. The average perimeter energy
per cell is fairly constant, due to the imposed constant
average side length and to the Euler condition {(n )=6,
since 0, /sinf, does not vary considerably for 3=<n =< .
Distortion energy increases with u,. Although it is much
less than the perimeter energy (see Fig. 5) it is essential in
preventing zero area cells to appear in the froth; al-
though, as stated before, its exact form seems not to be
important.

When considering the froth as a whole, the relevant
quantity is the energy per area that is plotted in Fig. 6.
Again, we present perimeter and distortion energy terms
separately as functions of u,. Perimeter energy per area
increases with u, because the average area {(a ) decreases
with topological disorder, as is shown on Fig. 2. The to-
tal energy per area increases with p, and has a fairly flat
behavior for 1=<pu,=<3.0, which is in qualitative agree-
ment with the experimental fact that u, stops increasing
at p,~1.5.3

Distortion energy has a twofold effect on the behavior
of the total energy per area: (i) it has an average value
that increases with u,, and (ii) it modifies the reduced dis-
tribution function, Eq. (25), preventing zero area cells to
appear. When this energy term is not considered, {a )
increases with 1,.** Hence the increase of the average
perimeter energy with topological disorder is also an
effect of the distortion energy term. One remarks that u,
is not a free parameter but is univocally determined by
a,, which, in its turn, is the Lagrange multiplier associat-
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FIG. 5. Distortion, perimeter, and total energy per cell (in
units of o /21) vs the topological disorder u,.
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FIG. 6. Distortion, perimeter, and total energy per unit area
(in units of 0 /21) vs the topological disorder u,.

ed with the energy of the system. Then, the determina-
tion of u, implies the fixing of the energy and vice versa.
However, as u, is a measurable quantity, it is the ap-
propriate parameter to be chosen as the independent one.

VI. CONCLUSIONS

We have presented a theoretical model to describe the
equilibrium configurations of cellular systems, particular-
ly soap froths, by means of the methods of SM through
the maximum entropy principle. The generalized entro-
py has been calculated, including a minimum set of con-
straints. The geometrical constraints are the ‘“natural”
ones, but the average side length / is introduced as the
simplest hypothesis, after verifying that a structure with
no correlation between p and n violates Aboav and
Weaire’s law. On the other hand, no explicit constraint
on the disorder p, is imposed except through the total en-
ergy, improving the model and results of Ref. 24. The
energy terms include interface energy, bending of the
sides, and cell distortion. These contributions are partic-
ularly adequate to describe soap froths but one can easily
generalize the model to other cellular systems such as
metallurgical aggregates.

As in Ref. 24 we have obtained a remarkable agree-
ment with experimental results for the cells distribution
of the number of sides and the mean value of the area of
n-sided cells as functions of n. We obtain a theoretical
equation different from Lewis’s law,3? but in the region
0=<pu,=<3.0 both expressions and experiments* yield to
similar numerical results. It would be interesting to in-
vestigate systems with greater disorder, like those de-
scribed by Fortes and Andrade.>*

Finally, the area distribution ¢(a/{a}) is calculated
for the first time within this method, and it is in good
agreement with the results of Glazier and co-workers.3%3!
We remark that the taking into account of distortion en-
ergy is essential for arriving at reasonable results. Other-
wise, nothing prevents zero area cells, and ¢(a/{a))
presents a maximum for a —0.
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From these considerations we conclude that SM
methods are well suited to describe cellular systems,
mainly soap froths. An appropriate choice of energy will
enable us to describe other cellular systems.
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APPENDIX A

A regular polygon of n sides of length / has an internal
angle given by
(n—2)
Y,

B,= N))

When its sides bend to make angles of 27 /3 they deviate
from the straight-line position by an angle 6, given by

(A2)

and a bent side /* can be considered as an arc of cir-
cumference that measures 26, with radius R =//2sin,,.
The length of the arc /* is

16,
sinf,

* —

(A3)
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and the corrected perimeter p* of the polygon reads

. nle, o, A
P " ine, Ping,
APPENDIX B

In a soap froth the difference of pressure between two
adjacent bubbles causes a curvature on the common wall.
Surface tension of the soap film acts to restore the walls
to the straight-line position. Equilibrium is attained
when internal pressure and surface tension compensate
each other.

Surface tension can be deduced from perimeter energy:

oE
p_0O
» 2’ (B1)

where E, is the perimeter energy.

The force per unit length due to surface tension is
o /2nl, and it must be equal to internal pressure (assum-
ing an ideal gas). Hence

Pa=——qa . (B2)

Taking the value of the average area of n-sided cells, Eq.
(32), and comparing Egs. (10) and (11), we estimate the
order of C as

c~0.1< . (B3)
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