
Concatenated retrieval of correlated stored information in neural networks

R. M. C. de Almeida,1,* A. Espinosa,2 and M. A. P. Idiart1
1Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brazil

2Instituto de Física, Universidade Federal da Bahia, 40210-340 Salvador, BA, Brazil
�Received 20 March 2006; revised manuscript received 4 September 2006; published 19 October 2006�

We consider a coupled map lattice defined on a hypercube in M dimensions, taken here as the information
space, to model memory retrieval and information association by a neural network. We assume that both
neuronal activity and spike timing may carry information. In this model the state of the network at a given time
t is completely determined by the intensity y�� , t� with which the information pattern represented by the
integer � is being expressed by the network. Logistic maps, coupled in the information space, are used to
describe the evolution of the intensity function y��� , t� with the intent to model memory retrieval in neural
systems. We calculate the phase diagram of the system regarding the model ability to work as an associative
memory. We show that this model is capable of retrieving simultaneously a correlated set of memories, after a
relatively long transient that may be associated to the retrieving of concatenated memorized patterns that lead
to a final attractor.
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I. INTRODUCTION

In a previous paper �1� we have proposed that to any
information processing machine we can associate a space
where each point represents an information pattern that the
machine may express. This information space may be
viewed as an analogy to the Fourier space for a musical
instrument. The advantage of such approach is to provide a
framework to compare the performance of different informa-
tion processors, realized through different physical substrates
such as, for example, neural networks or the immune system,
exactly in the same way as the Fourier space allows the
comparison of music played in a violin or a flute.

The topology defining neighborhood relations between in-
formation states as well as the interactions between these
neighbors may strongly vary from machine to machine. Un-
derstanding, from one side, what interactions in the informa-
tion space allow the systems to accomplish different tasks
and, from the other side, discovering the role played in the
information space by the physical, chemical, or biological
interactions of the material system, is a first step not only to
understand the functioning of an existing system, but also to
build an information processing machine with designed ca-
pabilities.

An important step to this understanding is to write the
recipe to go from the material configuration space to the
information space, that is, the analogous to the Fourier trans-
form in the metaphor of musical instruments. This step
should be taken with care, paying due attention to the bio-
logical facts in the special case of neural networks or other
biological systems. This will prove to be an enormous task
and in Ref. �1� and here we just propose a starting point. A
second step is to understand the dynamics in the information
space.

In Ref. �1� we have proposed the topology of an
M-dimensional hypercube to model the information space of

a system capable of expressing a maximum of 2M informa-
tion patterns. Each vertex of the hypercube is associated to
the integer � whose binary representation is the
M-dimensional vector giving the position of that vertex,
while the neighbors of a given � are the M integers whose
binary representation differ from � by one bit. To each point
� in this information space, we associate a continuous, non
negative function representing the intensity of expression
y�� , t� of that information pattern at a given time t. Conse-
quently we look for a transformation �and its inverse� that
takes from the 2M values of the intensity of expression to the
variables that describe the system in the real world �and vice
versa�.

As the vertices of a hypercube in M dimensions are la-
beled by bit strings it is all too tempting to associate each
vertex to the configuration of a network made of M binary
neurons, obtaining a trivial transformation from the configu-
ration space to the information space. In fact this is what is
implicitly done in Hopfield-like models �2–5�. Observe,
however, that when this simple transformation is assumed,
�i� there is no room to expressing more than one information
pattern at a given time �y�� , t� is different from zero for only
one ��, and �ii� there are M variables in the configuration
space, while we find 2M intensity of expression functions. In
fact, the smaller number of variables in the configuration
space reduces the number of states in the information space
available to the system, strongly impoverishing its computa-
tion performance. On the other hand, the ability of simulta-
neously expressing different information patterns is a neces-
sary condition to build up a representation of the
environment that is isomorphic to the real world in some
degree. These facts point to the necessity of information pro-
cessing units in the material world far more complex than
binary neurons.

Fortunately, although neurons do behave as binary vari-
ables during time intervals of the order of 2 ms, real neural
networks dynamics is rather more complex than that of
Hopfield-like models. In fact there is evidence that neurons
integrate signals in space and time with under millisecond*Electronic address: rita@if.ufrgs.br
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precision in spiking synchronization �6–12�. In what regards
space integration, Mountcastle �13–15� had already proposed
minicolumns as sets of neurons more intensely coupled be-
tween themselves than with other neurons and many authors
have found evidences for these spatially integrated structures
beyond the sensory cortex �16–21�. Furthermore, develop-
ments in neuroscience reveal that it is important to consider
multi-interactions and a dynamical modulation of these inter-
actions, in the sense that it is the overall activity of the net-
work that should define how these interactions are regulated
�22–33�. It makes sense, then, the definition of sets of neu-
rons acting coherently as what we call cognitive units. Now
the possible states for a system made of such cognitive units
compose the configuration space, from which it is possible to
define a transformation that takes to an information space
where different patterns may be simultaneously expressed.

In Ref. �1� we have approached the problem from the
information space side, by proposing a logistic map model
for the dynamics of the expression intensity function y�� , t�,
where memorized information patterns present higher logis-
tic parameters than nonmemorized patterns. We also pro-
posed a transformation to the configuration space, where the
role played by multi-interactions, space and time integra-
tions, and synaptic modulation clearly emerge, showing why
a Hopfield-like dynamics is not suitable and more complex
cognitive units are required. Nevertheless, in the adequate
limits we recover a Hopfield like model, in the narrow sense
that there are attractors of the model dynamics which are
patterns stored through a Hebb-like learning rule, including
multi-interaction terms. Finally we compare the results with
experimental data regarding the performance of human sub-
jects in remembering the items of a list that has been previ-
ously shown. This is the first neural network model, to our
knowledge, that allows such comparisons.

In this paper we consider a slightly different dynamics,
that have turned out to present a better performance regard-
ing associative memory capabilities. For this dynamics, in
Sec. II we propose the model equations and in Sec. III we
obtain a phase diagram in the model parameter space. Sec-
tion IV presents results regarding the effect of loading the
network with memorized patterns and of external noise, and
finally, in Secs. V and VI we calculate the size of basins of
attractions and discuss effective size of basins of attraction
when the network is capable of concatenating a chain of
successively retrieved correlated memories. Discussions and
conclusions are presented in Sec. VII.

II. THE TRANSFORMATION AND THE MODEL
EQUATIONS

Space and time integration of the signals received by a
neuron greatly influences its response. As we have exten-
sively discussed in Ref. �1�, we can define a cognitive unit
that contemplates the states of � binary neurons during K
slices of a time interval of typically 15 ms. The state of the

cognitive unit S̃i�t� during a time step beginning at time t is
then defined by a string of K�� bits, written as

S̃i�t� = �s1,1
i ,s1,2

i , . . . ,

s1,K
i ,s2,1

i ,s2,2
i , . . . ,s2,K

i , . . . ,s�,1
i ,s�,2

i , . . . ,s�,K
i � , �1�

where sj,�
i = ±1 indicates whether the jth neuron in process-

ing unit i has spiked in the �th time subinterval.
We assume as in Ref. �1� that these cognitive units are the

relevant units to process information and it is through them
that we have proposed the transformation to the information
space, defined as the vertices of a hypercube in M dimen-
sions. Each vertex �, �=0,1 ,2 , . . . ,2M −1, is associated to
an information pattern that can be expressed by the neural
network and a continuous intensity function is defined for
each pattern as y�� , t�. The transformation is written as

a�t� = �
�=0

2M−1

y��,t� ,

�S̃i�t��a�t� = �
�=0

2M−1

y��,t��i,

�S̃i�t�S̃j�t��a�t� = �
�=0

2M−1

y��,t��i� j ,

]

�S̃1�t�S̃2�t� ¯ S̃M�t��a�t� = �
�=0

2M−1

y��,t��1�2 ¯ �M , �2�

where �i= ±1 for i=1, . . . ,M give the binary representation
of � through the relation

� = �
i=1

M
�i + 1

2
2i−1 �3�

and the correlation functions are defined as

�S̃i1
�t�S̃i2

�t� ¯ S̃im
�t�� =

1

�K
�
j=1

�

�
�=1

K

sj,�
i1 sj,�

i2 . . . sj,�
im , �4�

where i1 , i2 , . . . , im correspond to different processing units.
As each bit sj,�

i = ±1, the above equation implies that corre-
lation functions with one or more repeated units are redun-
dant. For a network with N neurons, there are M =N /� pro-
cessing units, and M correlation functions involving only one
unit, but a total number of 2M nonredundant correlation func-
tions. This is so because the correlation functions that in-
volve more than one unit carry information on the spiking
relative phases.

The number of correlation functions in the left hand side
of Eqs. �2� must be equal to the number of averages in the
information space that lays in the right hand side, what ex-
plains why we took the bit-string length M in the information
space equal to the number N /� of processing units, where N
is the total number of neurons in the network.

The role played by K, the number of time slices in the
integration time, is to approach the correlation functions to
the continuous limit �K�→��. Observe that, given all ex-
perimental quantities, in the continuous limit, we can univo-
cally determine y�� , t� up to a normalization constant a�t�.
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On the other hand, a�t� can be viewed as an overall informa-
tion activity of the network, as measured in the information
space. Equations �2� also show that the intensity of expres-
sion functions y�� , t� are analogs of the oscillation modes
amplitudes in a Fourier transform, meaning that they com-
pletely determine the variables in the configuration space and
vice versa.

There is a strong degree of arbitrariness in choosing Eqs.
�2� and �4�. They imply, for example, a one to one correspon-
dence between neurons in different cognitive units. In the
general case, a different set of correlation functions would be
necessary to characterize the network behavior, yielding per-
haps modified transformation equations, in which case M
�N /�. In fact, the information space dimension, M, should
be equal to the logarithm of the number of independent vari-
ables of the evolution equations describing the neural net-
work.

The dynamics for the intensity functions should meet the
following, in the case we design the network as an associa-
tive memory device.

�i� There must be differences between memorized and
non-memorized patterns such that attractors correspond to
the expression of memorized patterns. The retrieving of a
pattern � is modeled by a non-negligible value of the inten-
sity function y�� , t� for a finite time interval. The dynamics
of the model must present attractors associated to the retriev-
ing of memorized patterns.

�ii� There must be a range of external noise where
memory retrieving attractors are robust.

�iii� There must be a range of external noise where non-
memorized patterns are not excited, preventing an activity
explosion.

�iv� The excitation of neighbors should temporarily elicit
information patterns, memorized or not, to allow information
transport along the hypercube, and the consequent memory
retrieval by association.

Here we investigate the properties of the information
space whose intensity function dynamics is described by a
set of 2M logistic maps coupled by the logistic parameter as
follows:

y��,t + 1� = �1 − y��,t��y��,t����,t� , �5�

where

���,t� = x��� +

�
��

z��,���y���,t�

�
��

y���,t�
. �6�

Depending on whether ��� , t� is momentarily less, equal or
greater than 1, there may be persistent states where y�� , t� is
larger than zero. The logistic parameter is the result of the
combination of two terms: �i� x���, that does not depend on
time and is a function of � only and �ii� a dynamically set
term, that describes the coupling between different informa-
tion patterns. Here we assume a number P of special patterns
that the system is more inclined to express, the memorized
patterns, represented by �� with �=1,2 , . . . , P. As in Ref.
�1� such special status is accomplished by setting

x��� = kv + �km − kv��
�=1

P

���,��� , �7�

where ��� ,��� is the Kronecker delta function, while km and
kv are adjustable parameters of the model. The second term
describes how the state of the whole network influences the
effective retrieving of a given pattern. Here we consider that
such interaction is only possible between neighboring states,
such that patterns with similar information content reinforce
each other, therefore

z��,��� = z����,��i�� , �8�

where z is a positive parameter and the integers ��i�=�
−�i2

i−1, i=1, . . . ,M are the first neighbors of � in the hyper-
cube.

A striking difference between the information space as
conceived in this work and a phase space for usual neural
network models, is that a given state of the physical system
realizing the information processing may simultaneously ex-
press multiple information patterns. On the other hand, there
must be a limit for that and therefore some competition be-
tween information patterns is essential. This is achieved by

using the network information activity a�t�=��=1
2M

y�� , t� to
modulate the coupling between neighboring sites in the in-
formation space: when many different patterns are simulta-
neously expressed, the network is too active and association
is less intense. Equation �5� differs from Ref. �1� in the satu-
ration term �the first factor in the right-hand side�: �1−a�t��
was replaced by �1−y�� , t��. In the original model the satu-
ration term added a competition among patterns. This change
enhances information transport between different memory
patterns as we will see in the results towards the end of this
paper.

The correlation functions are relevant in determining the
evolution of the system. In fact, for the evolution equations
given in Eq. �5� to completely specify y�� , t+1� �up to the
normalization constant�, it is necessary to know all pattern
intensities at time t. As there are 2M intensities, the complete
specification of the state of the net requires a phase space of
2M dimensions, where Eq. �5� can be regarded as a master
equation of a Markov process. Observe that the set of the

quantities a�t�, �S̃i�t, �S̃iS̃j�t, �S̃iS̃jS̃k�t , . . ., �S̃1S̃2¯ S̃M�t con-
tains 2M elements and allows us to determine the 2M values
of y�� , t� at a given time t and their subsequent evolution.

That the evolution equation, Eq. �5�, defined in the infor-
mation space, implies an evolution for the cognitive units
variables, can be seen by first writing the � function in Eq.
�7� as

���,��� = �i=1

M 1 + �i�i
�

2

=
1

2M	1 + �
i=1

M

�i�i
� + �

i=1

M−1

�
j=i+1

M

�i�i
�� j� j

�

+ ¯ + �1�1
��2�2

�
¯ �M�M

�
 , �9�
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such that using this expansion in Eq. �7�, we may rewrite
x��� as

x��� = kv +
2P

2M �km − kv�	1 + �
i=1

M

Ji
�1��i + �

i=1

M−1

�
j=i+1

M

Jij
�2��i� j

+ �
i=1

M−2

�
j=i+1

M−1

�
k=j+1

M

Jijk
�3��i� j�k

+ ¯ + J12¯M
�M� �1�2 ¯ �M
 , �10�

where the synaptic intensities J�k� describe multiinteractions
involving k neurons and are given as

Jj
�1� =

1

P
�
�=1

P

�i
�,

Jij
�2� =

1

P
�
�=1

P

�i
�� j

�,

Jijk
�3� =

1

P
�
�=1

P

�i
�� j

��k
�,

]

J12¯M
�M� =

1

P
�
�=1

P

�1
��2

�
¯ �M

� , �11�

which are expressions equivalent to the ones presented in
Refs. �27–33�.

The expansion for x��� proposed in Eq. �10� implies that
the first term in the evolution equation �5� is regulated by
Hebb-like terms. Using Eq. �10� in Eq. �5� we obtain

a�t + 1��S̃i�t+1 = 	kv +
2P

2M �km − kv�
a�t��S̃i�t +
2P

2M �km − kv�a�t�	�
j=1

M

Jj
�1��S̃iS̃j�t + �

j=1

M−1

�
k=j+1

M

Jjk
�2��S̃iS̃jS̃k�t + �

j=1

M−2

�
k=j+1

M−1

�
l=k+1

M

Jjkl
�3�

��S̃iS̃jS̃kS̃l�t + ¯ 
 +
2P

2M �km − kv� �
�=0

2M−1

y2��,t�	�
j=1

M

Jj
�1�� j�i + �

j=1

M−1

�
k=j+1

M

Jjk
�2�� j�k�i + �

j=1

M−2

�
k=j+1

M−1

�
l=k+1

M

Jjkl
�3�� j�k�l�i

+ ¯ 
 + �
�=0

2M−1

�1 − y��,t��y��,t�
z�i

a�t��j

M

y���j�,t� .

Neglecting terms of order 2 or higher in y�� , t�, the above
equation shows that the evolution of the correlation function

�S̃i�t is regulated by the value of correlations in a previous
time step. Multi-interaction is clearly present and also the
interaction modulation between any two given cognitive
units by the state of other units. In this paper we will proceed
by analyzing the performance of the model in the informa-
tion space and in the next section we define useful order
parameters.

III. THE PHASE DIAGRAM IN THE ABSENCE OF NOISE

Depending on the parameters of the model, many differ-
ent attractors may appear. Here we shall focus on those at-
tractors and their stability that are related to the performance
of the model as an associative memory device. Given the
nature of the evolution equations, which are coupled logistic
maps, we can expect a trivial attractor where all the expres-
sion intensity functions are zero and no information is ex-
pressed by the net. This inactive state should be stable
against an explosion of information expression, where inten-
sity functions of all nonmemorized patterns have non-
neglegible values. For that, the state where y�� , t�=y* with
y* 	0 if ����, �=1,2 , . . . , P should not be an attractor of

the dynamics. For this requirement it suffices that kv
1, in
the limit that zM /2M →0, that is, if M is large enough.

We consider first a low memory load: P is small enough
such that P randomly chosen memorized patterns are not
near one another on the hypercube. In this case we shall
consider states where one memorized pattern, say �1, is ex-
pressed with intensity y0 while its M first neighbors are ex-
pressed with intensity y1. All other patterns are not expressed
by the net, such that the global activity a�t�=y0+My1. The
evolution equations are then reduced to

y0 = y0�1 − y0�	km + z
My1

y0 + My1

 ,

y1 = y1�1 − y1�	kv + z
y0

y0 + My1

 , �12�

with the condition that kv+z
2y1

y0+My1

1 ensuring that the in-

tensity of expressions of second neighbors to �1 goes to zero
�y2=0�. Consider first the solution where y0�0 but y1→0.
For this solution to exist we need km	1 and kv+z
1, yield-
ing y0= �km−1� /km. When y1	0, we must explicitly solve
Eq. �12�. Isolating y0 in the second equation of Eq. �12� and
using in the first equation we obtain an algebraic third order
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equation for My1. Observe that y1→0 when M→�, but it is
possible that My1 remains finite.

�My1�3 + A2�My1�2 + A1�My1� + A0 = 0, �13�

where the coefficients are

A2 = �1 − 2kv

kv
+

1

km + kv + z
�M +

kv + z − 1

kv
+

km

kv�km + kv + z�
,

A1 =
�1 − kv��1 − km − kv − z�

kv�km + kv + z�
M2 + �2�2 − kv − z�

kv

−
3km + 1

�km + kv + z�kv
�M ,

A0 = � kv + z − 3

kv
+

2�km + 1�
�km + kv + z�kv

�M2. �14�

In the M→� limit Eq. �13� reads

�1 − kv��1 − km − kv − z�
kv�km + kv + z�

My1 + � kv + z − 3

kv
+

2�km + 1�
�km + kv + z�kv

�
= 0, �15�

yielding the solution

y0 =
km + kv + z − 2

km + kv + z − 1
,

y1 =
1

M

kv + z − 1

1 − kv
y0. �16�

Clearly, positive solutions can only exist for km+kv+z	2
and kv+z	1, since kv
1 to avoid undesirable high excit-
ability of non memorized patterns. We can define an effective
logistic map parameter as �=km+zMy1 / �y0+My1� that, in
order to guarantee stationary solutions, should be in the in-
terval �0,3�, yielding the condition 2
km+kv+z
4. Equa-
tions �16� are valid for M→�. We point, however, that sta-
tionarity may represent a too stringent requirement, since
periodic or chaotic deviations around a non-negligible value
of the intensity function could also be interpreted as pattern
retrieval. In this case, one should expect 2
km+kv+z
5.
Anyway, we shall proceed the calculation of the phase space
within the stationarity requirement. In the following sections,
where we consider information transport, this limit will be
relaxed.

For finite M, we must solve Eq. �13�, requiring further
that sites that are second neighbors to the excited memory
also go to zero. The phase diagram for kv=0.25 and 0.75 are
shown in Fig. 1 for M =10, 16, 50, and M→� curve. Finite
size effects are clearly visible, but the solutions approach the
infinite size result very fast. The finite size deviations, arise
from nonzero values of y1 which can excite second neighbors
for high values of kv or z: when M→�, y1→0 and these
excitations are not possible.

The implicit summary in the phase diagrams is as follows.
There are two different retrieving situations: �i� when kv+z

1 and 1
km
3, we have the trivial stationary solution

where y0= �km−1� /km and y1=0 and �ii� when kv+z	1 and
2−kv−z
km
4−kv−z. For the last cases the solutions for
M→� are given by Eq. �16�. The horizontal line for kv+z
	1 in both plots is a lower bound guaranteeing that km
	kv, that is, memorized patterns are more excitable than
nonmemorized ones.

Finite size effects are better detected in the plot of the
solutions themselves, presented in Fig. 2. We have plotted y0
and y1 for different values of M, obtained from either M
→� solution, Eq. �16�, or obtained from Eq. �13� for finite
M. To verify the validity of these solutions we have simu-
lated the model for M =10 and 16, shown as solid symbols in

FIG. 1. Phase diagrams for kv=0.75 and kv=0.25 in the
�km ,kv+z� plane. Lines and open symbols correspond to simula-
tions with different network sizes. The horizontal line in the region
kv+z	1 corresponds to the line km=kv. Dashed lines corresponds
to km+kv+z=2 and km+kv+z=4. For km
1 and km+kv+z
2 there
is only the trivial solution, while the upper region km+kv+z
4
corresponds to either trivial or nonstationary solutions.

FIG. 2. Solutions y0 and y1: Simulation results for finite M
=10 and 16 �solid symbols�; theoretical solutions for M =10, M
=16, and M =50 �open symbols�; theoretical solution in the M
→� limit �dashed lines�. We considered kv=0.2 �squares�, 0.4
�circles�, 0.5 �up triangles�, and 0.6 �down triangles�. Larger kv
yields larger y1.

CONCATENATED RETRIEVAL OF CORRELATED STORED… PHYSICAL REVIEW E 74, 041912 �2006�

041912-5



Fig. 2. We considered kv=0.2, 0.4, 0.5, and 0.6. The simula-
tions were performed by iterating Eqs. �5� for long time from
initial conditions equal to the M→� analytical solution and
guaranteeing that a stationary state has been attained. We
have considered only one memorized pattern, since in this
section we focus on the sparsely loaded �small P� case. We
observe that the M→� values for y0 are a very good ap-
proximation even for small lattices, while the values for y1
are more sensitive to the finite size of the lattice. Differences
in y1 between finite M and theoretical, M→� solutions, rep-
resented by dashed lines, are larger for larger values of kv. In
fact, for finite M, both theory and simulations show smaller
differences between the values of y1 obtained with different
kv when compared to infinite lattices results.

Now we consider the solution where l noncorrelated pat-
terns are equally and simultaneously expressed by the net.
We still restrict ourselves to the sparsely loaded net. In this
case the stationary solutions and the phase diagrams are trivi-
ally obtained from Eqs. �16� by changing z→z / l, since the
difference arises through the global network activity a�t� and
not by the action of the excited memories neighborhood.

Focusing in the M→� case, we plot in Fig. 3 the phase
diagram for different values of l, for two different values of
kv. The point here is to indicate the region in the phase dia-
gram that a system may present stationary solutions with
different numbers of simultaneously expressed memories:
the stationary solution regions in different l phase diagrams
should overlap. It is possible to see in Fig. 3 that for kv
=0.25 there is an interval for km and z such that stationary
solutions with l=1 and 2 are stable, but not l=5. Remember,
we look for solutions where y0	0 and y1	0, see Fig. 1.
When kv=0.75, on the other hand, there is a small region in
the phase diagram, painted in light gray in the figure, where
solutions with l=5 simultaneously expressed memories are
also stable. We can estimate the maximum possible number
of simultaneously expressed memories lmax by noting that
overlapping regions in the phase space appear when the
higher limit for l=1 stable solutions are larger than the lower
limit for l	1 stable solutions. This happens if l− �l−1�kv

3, yielding

lmax =
3 − kv

1 − kv
. �17�

This limit is rather interesting. Results of experiments
where a list containing many items is shown to individuals,
in a controlled environment and under well defined condi-
tions, show that after a time interval individuals may remem-
ber about five items of the list �34–36�. The above results
show that kv
0.5 for lmax=5, which falls in a reasonable
region of the phase space, in what regards the performance
of the model.

IV. THE EFFECTS OF LOADING THE NETWORK
AND EXTERNAL NOISE

We shall now consider the effect of loading the network
with memorized patterns. For that we repeat the iteration
procedure of last section, starting from the state correspond-
ing to the stationary solutions where one memory is ex-
pressed with intensity y0, surrounded by neighbors expressed
with intensity y1. The difference here is that we consider that
there are P memorized patterns, that is, P vertices of the
hypercube have been randomly chosen to have x���=km. We
then let the system stabilize to measure diverse quantities. In
the absence of external noise and for small values of P we do
not see any differences in the model behavior. However,
when P increases it may happen that memorized patterns are
neighbors to each other in the hypercube and hence the as-
sumptions used to obtain the phase diagrams in Figs. 1 and 3
are no longer valid. Also, when there is external noise, other
memorized patterns may be excited destabilizing the initial
configuration, where the system expressed one memorized
information pattern.

We monitored several quantities. The first one is the over-
lap �m��t of the network with the �th pattern ��
=1,2 , . . . , P� at time t, defined as

�m��t = �
�=0

2M−1
y��,t�
a�t�

m���,�� , �18�

where

m���,�� =
1

M
�
i=1

M

�2���i
�,�i� − 1� , �19�

with �i
� and �i being the ith bits of, respectively, �� and �,

and � is the Kronecker delta function.
We also keep track of the information intensity of a given

pattern y0
��t�=y��� , t� and of its neighborhood y1

��t�, defined
as

y1
��t� =

1

M
�
i=1

M

y��i���,t� , �20�

where �i��� is the neighbor of �� with the ith bit flipped. We
finally measure the information activity a�t� is defined in Eq.
�2�, and the background b��t� related to the �th stored pat-
tern as

b��t� = a�t� − y0
��t� − My1

��t� �21�

FIG. 3. Phase diagrams for kv=0.75 and kv=0.25 in the
�km ,kv+z� plane for solutions presenting l excited, isolated
memories.
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which gives the network excitation that is not caused by the
excitation of ��.

We have measured the above defined quantities after iter-
ating Eq. �5� for long time, starting from the M→� station-
ary solutions given by Eq. �16�, subjecting the system to
noise and different number P of memorized patterns. The
noise is introduced by adding to all intensity functions a
random term, uniformly distributed in the interval �0,T /2M�,
after each time step iteration has been carried out. The factor
1 /2M allows us to compare different M simulation runs with
the same value of global noise T, since at each time step this
is equivalent to add T /2 to the global information activity
a�t�. The results in Figs. 4–6 have been obtained after aver-
aging over ten samples.

We considered different regions of the phase diagram. We
start with the case where km	1 and kv+z	1. In this case

the one memory stationary solutions in the absence of noise
is stable when 1
km
3 and a memorized pattern may stay
excited without the support of neighboring sites. This means
the expression of memorized patterns are not strongly af-
fected by the global activity of the network and we expect
that noise awakes other memorized patterns.

In Fig. 4 we present the results for this case and we see
that for all values of nonzero noise the overlap is very near
zero, although the expression intensity y0 of the initial pat-
tern is kept at non-negligible values. It means that all other
memorized patterns are also excited, yielding an activity that
grows linearly with P, shown in Fig. 5. As a consequence,
this is not an interesting region for modeling associative
memory. We also report having considered the case km	1,
but kv+z
1. The results are not significantly different from
the above case, when km	1, and kv+z	1: it suffices that
km	1 for all stored patterns to excite in presence of noise.

We considered then the case when km
1, and kv+z	1.
This region is interesting because a memorized pattern needs
the support of the neighboring sites in order to keep a finite
intensity function. The results are shown in Fig. 6. We can
observe a transition from regions where a finite value of
overlap with the initially excited pattern is maintained, to
another behavior where this overlap decreases to values near
zero. The nature of this transition strongly depends on P: for
small values of P the system suffers a first order transition
while, as P increases, the transition from high to low values
of final overlap seems to be gradual. We also remark that for
different network sizes, the values of P where there is a
deviation from the first order transition varies, scaling with
2M. This seems to be a percolation induced effect: as the
network is loaded, the probability that excited stored patterns
influences their neighbors increases and the stability of one
retrieved memory is disturbed. Figure 6, together with the

FIG. 4. Behavior of the model as function of global external
noise for km=1.6, kv=0.25, and z=1.0. Upper plots: Overlap with
an initially excited memory. Middle plots: values of the intensity
function y0 for the excited pattern and the average y1 for its neigh-
borhood. Lower plots: global activity a and background b related to
the initially excited pattern. Left column: M =10. Right column:
M =16.

FIG. 5. Global activity a as function of network load P for km

=1.6, kv=0.25, and z=1.0, in the presence of a nonzero external
noise: a goes linearly with P indicating that all memorized patterns
are excited by the external noise. We show results for M =10 and
M =16. The inset shows the linear dependence for initial values of
P.

FIG. 6. Behavior of the model as function of global external
noise for km=0.7, kv=0.25, and z=1.2. Upper plots: Overlap with
an initially excited memory. Middle plots: values of the intensity
function y0 for the excited pattern and the average y1 for its neigh-
borhood. Lower plots: global activity a and background b related to
the initially excited pattern. Left column: M =10. Right column:
M =16.
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results from previous sections, indicate that the interesting
regions in the phase space to model associative memory is
the one defined by the constraints km
1, kv�km, 2
km
+kv+z
4, and kv+z	1.

On the other hand, for high values of network load P and
noise T, the overlap fluctuates wildly, but with non-
neglegible, positive values, while the network activity a is
significantly larger than the background b. It indicates that
the initial pattern is still the main pattern expressed by the
net. In that sense, loading the network helps maintaining an
initially expressed pattern against external noise.

As far as noise is concerned, however, Fig. 6 does not tell
the whole story. In Fig. 7 we plot the overlap with the ini-
tially excited pattern versus time for P=120 for M =16, for a
noise lower �T=0.010� and higher �T=0.011� than the criti-
cal value. In accordance to Fig. 6, the overlap either keeps at
a finite value or goes to zero, depending on the noise. How-
ever, for T	Tc, there is a finite time interval when the over-
lap is kept at high values: the network is capable of retriev-
ing an excited pattern for a finite time when subjected to
noise, after which it forgets. It would be interesting to mea-
sure the dependence of the retrieving time interval with the
load P, and noise level, but it is beyond the scope of the
present work.

V. BASINS OF ATTRACTION

We are finally at a stage where we can consider estimating
basins of attraction. Basins of attraction measures are in-
tended to estimate the maximum distance from a memorized
pattern that an initial stimulus is able to make the system
recover that pattern. We have considered different levels of
external noise and systems with only one memorized pat-
terns to avoid competing effects from nearby memories. The
simulation protocol we used is as follows. We first stabilized
the system by letting it relax for 20 time steps subject to the
given external noise. A randomly chosen information pattern,
in a h0 Hamming distance from the memorized pattern is
stimulated for 40 time steps, that is, after each time step we
added a fixed amount to the stimulated pattern expression
intensity. We then let the system evolve, always subject to
the same external noise for 1000 time steps, when the system

is already stabilized. We then measured the expression inten-
sity of the memorized and stimulated pattern, as well as the
global activity of the network for different values of km
1,
kv, and z.

In Fig. 8 we present the results for M =16, km=0.7, 0.8,
and 0.9, with kv=0.0, 0.05, 0.15, 0.25, and 0.35, and with the
coupling constant z=1.05, 2.05, and 3.05. Different levels of
external global noise T were also considered.

For stimuli with three or more bits different from the
memorized pattern we could not find any memory recovery.
The final configuration is either no excited pattern at all, or
only the stimulated pattern excited. This last situation hap-
pens for 2kv+z	2 which, in the theoretical solutions, corre-
sponds to the recovery region for km=kv. In Fig. 8 we have
then presented the results for h0=0, 1, and 2. In that table we
used a color code to represent the results for each set of
parameters km, kv, z, h0 and T, such that each one of the four
possible behaviors is associated to a color, as follows: �i�
light gray means that both stimulated and memorized pat-
terns are excited, �ii� shaded means that only the stimulated
pattern is excited, �iii� dark gray only the memorized pattern
is excited, and finally, �iv� white is used when no pattern is
excited. In case h0=0, that is the stimulus is applied on the
memorized pattern, the awakening of the memorized pattern
implies in the excitation of the stimulated pattern since they
are the same, and the only possible colors are light gray or
white.

For example, take km=0.80 and T=0.001. For z=1.05,
kv=0.15, the table in Fig. 8�b� shows white squares for h0
=0, 1, and 2, meaning that for stimuli at the memorized
pattern, one or two bits apart no pattern is excited. For z
=1.05 and kv=0.35 we find in the same table light gray, light
gray, and white squares for, respectively, h0=0, 1, and 2,
indicating that applying the stimulus at the memorized pat-
tern or at one of its neighbors, both memory and stimulated
pattern stays excited while the stimulus at two bits apart
cannot excite any pattern. Changing to z=2.05 and kv=0.15,
we find light gray, light gray and shaded squares for, respec-
tively, h0=0, 1, and 2, indicating that applying the stimulus
at the memorized pattern or at one of its neighbors excites
both the memorized pattern and the pattern at which the
stimulus was applied, while applying the stimulus on a pat-
tern that is two bits away excites only that pattern.

A different situation happens when z=3.05 and kv=0.15:
the result is light, light, and dark gray squares for, respec-
tively, h0=0, 1, and 2. Now, when the stimulus is applied two
bits from the memory, the memory is successfully retrieved
with the stimulated pattern being activated only for a tran-
sient time.

For z=3.05 and kv=0.35 the result is light gray, for h0
=0, 1 and 2. Therefore both memorized and stimulated pat-
terns are active for stimulations up to 2 bits away from the
memory. This is an indication that kv and z are high enough
to cause a y2�0 stable state.

Four of these situations are further illustrated in Fig. 9.
There we present the expression intensities for the memory
ymem and the stimulated pattern ystim for stimuli at the
memory, one or two bits apart. The two lower plots of Fig. 9
illustrate cases where y0 is not stationary, but oscillates as it
could be expected for km+kv+z�4.00.

FIG. 7. Overlap with an initially excited memory for M =16,
P=120, km=0.7, kv=0.25, and z=1.2, considering two values of
external noise T=0.010 and 0.011, respectively, before and after the
transition.
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Analyzing Figs. 8 and 9 the role of each parameter is
uncovered. In summary, for an excitation to be transported
from a stimulated pattern towards a not neighboring memory,
it is necessary that the site in the middle is susceptible
enough to be excited by a neighboring stimulus, but unstable
enough to decrease its expression intensity after the memo-
rized pattern is awaken. So kv cannot be too low to account
for the intermediate state susceptibility, and noise may help
at destabilizing it after the memorized pattern is excited. Fur-
thermore, higher values of km favor memory expression in
respect to intermediate states, destabilizing further excited
nonmemory states. This happens due to memory higher in-
tensity expression that increases the whole network activity a
and decreases the effective logistic parameter � of non-
memories.

VI. EFFECTIVE BASINS OF ATTRACTION
AND INFORMATION TRANSPORT

We now consider the effect of loading the network on
information transport and the related size of basins of attrac-
tions. By information transport we understand the excitation

FIG. 8. Tables summarizing the pattern recovery from stimuli applied at Hamming distance h0=0,1 ,2 from a memorized pattern. M
=16 and P=1. Light gray: both the memory and the stimulated patterns are excited. Shaded: only the stimulated pattern is excited. Dark
gray: only the memorized pattern is excited. White: no pattern is excited.

FIG. 9. Evolution of the expression intensities for the memory
ymem and the stimulated pattern ystim for stimuli at the memory �h
=0�, one �h=1�, or two �h=2� bits apart. M =16, km=0.8, and T
=0.001. Other parameters as indicated in the figures.
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of neighboring sites such that a cluster of awaken patterns
either grow or moves in the information space. In the previ-
ous sections we investigated information transport in the
case where the memories are not near each other. In this
section we briefly discuss the opposite case: when P is large
enough such that stored memories are not isolated anymore
on the information space.

In this case, the interaction between neighboring memo-
ries originates a complex behavior where a stimulus applied
on a randomly chosen pattern may successively awaken a
chain of memories until an interacting cluster of stored pat-
terns stabilize at excited levels. To characterize and measure
such a process, we followed the intensity of expression of all
memories, the evolution of the network activity a, the num-
ber of excited memories Nex, here defined as the number of
memories being expressed with intensity y	0.001, and the
distance Dc.m. from the “excitation center of mass” position
to the stimulated pattern �0, calculated as

Dc.m. =
1

M

�
�=0

2M−1

y��,t�h��,�0�

�
�=0

2M−1

y��,t�

, �22�

where h�� ,�0� is the number of different bits between � and
�0, that is, the Hamming distance.

We considered km=0.8, kv=0.25, z=2.05, being in the re-
gion where for P=1 and h0=2 a single memory is retrieved,
for M =16 systems. In Fig. 10 we show the results for P
=3000 and T=0.001. We have relaxed the network for 20
MCS at T=0.001 and have then randomly chosen a pattern.
An external stimulus has been applied to this pattern by re-
peatedly summing 0.1 to its intensity of expression for 50
MCS. In Fig. 10 we show a, Nex, and Dc.m., together with the
intensity of expression of the awaken memories and of the
stimulated pattern. For very early time Fig. 10�d� presents
two narrow peaks, one for the stimulated pattern and a sec-
ond one for an awaken memory, in agreement with Fig. 10�a�

showing Nex=1. This happens near the stimulated pattern as
indicated by low values of Dc.m.. It follows then an interval,
for t
400 MCS, where no memory is being expressed, but
the activity of the network does not go to zero, indicating
that nonmemorized patterns are being expressed: neighbor-
ing patterns are being contaminated. For t	400, three
memories are awaken and Dc.m. increases, together with the
network activity. For 400
 t
1200 the network seems sta-
bilized, expressing four memories at Dc.m.=0.345. At roughly
t=1200 MCS, however, all four memories are forgotten,
awakening other five, and, although the plots do not show
that far, we report that the system stabilizes at this attractor
as far as t=10000 MCS.

We also show the results for T=0.8 and P=6000, in
Fig. 11. The number of memories in the awakened clusters is
higher and so are the network activity as well as Dc.m., but
qualitatively the same scenario appears: the external stimulus
has caused the retrieval of a correlated cluster of memorized
patterns by passing through a nontrivial transient when other
memories have been expressed for reasonably long time in-
tervals.

The characteristics of the attractors depend on P and T.
For very small values of P there is not such transient and
typically only stimulus at one or two bits apart a memory are
able to retrieve it, as discussed for P=1 in the previous sec-
tions. For high values of T it may happen that no memory is
permanently awaken. The number of memories in the attrac-
tor also depends on P and T.

On the other hand, the behavior we just described may be
interpreted as the retrieval of very far memories, indicating
an effective size of basins of attraction much larger than
2 bits. It is true also that, in this case, the attractors are not
isolated memories any more.

VII. DISCUSSION AND CONCLUSION

We analyzed a model for information processing ma-
chines, obtaining analytical and simulation results in order to
characterize the model behavior. We started by discussing the

FIG. 10. Time evolution of �a� number of excited memories Nex,
�b� global activity a, �c� distance Dc.m. of the excitation center of
mass from the stimulated pattern, and �d� intensity of expression of
excited memories. M =16, P=3000, and T=0.001.

FIG. 11. Time evolution of �a� number of excited memories Nex,
�b� global activity a, �c� distance Dc.m. of the excitation center of
mass from the stimulated pattern, and �d� intensity of expression of
excited memories. M =16, P=6000, and T=0.8.
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possibility of going from the configuration space of a neural
network to the information space. We then proposed novel
equations to model the evolution of the expression intensity
functions associated to every information pattern. An impor-
tant advantage of the new model is its capability of simulta-
neously expressing many different information patterns.

It is worth mentioning that Treves and collaborators
�38,39� have proposed a Potts model with the interesting
behavior where a sequence of attractors dynamically replace
each other, also generating a concatenated retrieval of memo-
rized patterns. However, as the dynamics is implemented in
the configuration space, it is not possible to retrieve more
than one information pattern at a given time. In fact, when-
ever the information space is implicitly taken as the configu-
ration space, the simultaneous retrieval of many information
patterns is not possible.

We then turned to analyze the model by describing the
possible retrieval solutions in the limit of isolated memories.
The results are acceptable but are not impressive. However,
when the number of memorized patterns is enhanced, the
scenario changes dramatically.

First, there is a qualitative change in the attractors of the
network dynamics; from single, isolated patterns the attrac-
tors turn into clusters of stored information patterns. This
characteristic is very interesting in the sense it can describe
natural memory retrieving process, where, for example, dif-
ferent information association is triggered by a single infor-
mation stimulation. Second, there is the very retrieving pro-
cess, that first awakens transient memory patterns to then
stabilize at the attractor cluster, perhaps emulating human
remembering process where a chain of correlated informa-
tion is successively recalled to eventually recover a given
memory.

Regarding the details of the particular dynamics chosen
here, it interesting to notice that P=6000 in Fig. 11 is beyond
the limit of bootstrap percolation �37�, meaning that all the
existent memory clusters are connected by jumps of 2 sites.
The same is probably true for P=3000 in Fig. 10 as well,
since Ref. �37� only presents lower and upper limits for the
critical probability.

Therefore, our dynamics for y1�0 sees only a single per-
colating cluster and it is surprising that so few memories are
awaken after all. A possible explanation comes from the role
of a�t� in limiting excitation. When a memory is stimulated it
causes a spread of activity, such as a chain reaction in an
inhomogeneous media. But as the wave of activity grows it
gets weak and incapable of further propagation. Then the
center of mass drifts towards a region with larger memory
density. This might indicate that there are many possible
stable clusters of activity depending on the initial stimulus.

The previous section left open many questions. It pre-
sented a model with a novel behavior, which requires the
careful definition of order parameters and relevant quantities
that will allow its adequate description. For example, one
should estimate the number of stable attractors and the size
of the effective basins of attraction, how they depend on
temperature, and also design different stimulation protocols
to compare the model behavior with known human perfor-
mances in realizing tasks, such as recalling items from a
previously studied list. These points are presently under in-
vestigation and the results will be presented elsewhere.
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