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It is the purpose of this Letter to show that the
logarithmic divergence of the fermion self-mass
in lowest order perturbation theory of quantum
electrodynamics disappears if the approximation
is sufficiently improved and the bare fermion
mass is assumed to be zero.

%e start from the Dyson equation for the fer-
mion without the bare mass term; as in lowest
order perturbation theory we neglect the cor-
rections in the photon propagator and in the ver-
tex and put Z2=1:

s ' '(p)=~X-
4 fv sp'~~~&

pv (p-k) (p-k)
(p-k)'

1
. — d'k.

(p —k)' —ie

one finds the following nonlinear integral equa-

The use of the Landau gauge' has the result that
the P' part of the self-energy integral vanishes. '
Defining the function m(p') by'

S ' '(p) =ip'+m(p'),

tion:

iSn m(k') I 4„( )4~' m2(k')+k' ie (p -k)' -ie-
This equation can be reduced to a nonlinear dif-
ferential equation in momentum space' which,
however, is difficult to solve.

Because the theory does not contain a constant
with the dimension of a length, Eq. (3) is dilata-
tionally invariant'~'. If m(p') is a solution, the
same is true of A. 'm(A'p'). As we will see, the
solutions of Eq. (3) are, for not too high momen-
ta, closely approximated by the usual second-
order perturbation result:

m (k') = m + nf (k')

with f (-m') =0. The constant m corresponds to
the mass of the particle and may be used as a
label to characterize a certain member of the
set of solutions. Concentrating on one of the
solutions of Eq. (3), defined by m =m„we make
for nearly all momenta only a small error if we
replace in the denominator of the right-hand side
of Eq. (3) m(k2) by m, . For not too high values
of k' this is true because of Eq. (4) and for ultra-
high momenta m'(k') is negligible compared with
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k'. The only considerable change we may have
made in the equation is in the immediate vicinity
of the pole, but this is an infrared problem which
is at present not of interest. The usual lowest
order perturbation approximation is equivalent
to also replacing the numerator in the integrand
by a constant; we will show this to be a very poor
approximation at ultrahigh values of k2.

%'e now have

i3o. m(k') 1
4w' m, '+k' —ie (p -k)'-ie (5)

This is a linear equation, but our approximation,
together with Eq. (2), implies the normalization

and going over to configuration space, we get for
xylo

m(-m, ') = m, .
We will show that Eq. (5), together with con-

dition (8), allows an exact and physically reason-
able solution for all values of the coupling con-
stant satisfying the condition 0 & o & w/3. Putting

C being a normalization constant. For space-
like x one has

S (x, m ) =- S (x, ml)

for P =-m~ .2 2 (12)

From a physical point of view this equation re-
flects the condition that, for zero bare mass,
the electromagnetic self-mass should be the total
one. The integral in Eq. (12) can be written as
a four-dimensional integral in Euclidean momen-
tum space. s Going over to Euclidean configura-
tion space and integrating over angles, we finally
obtain

as is necessary for the Lorentz invariance of
Eq. (11).

The 6 functions defined in Eqs. (9), (10), and
(11) are generalizations of the corresponding
free invariant functions (v =1), which they ap-
proach asymptotically for large x'.

From Eqs. (5), (8), and (7), A should be nor-
malized to give

m(p') =-, A(p-k), . d'k =m,$3& 1
4~3 k2-ie

or

(0 - m, ')A( ') = -(3~/w)(I/x')A(x'), 3~ Z (m x)d (px)
m(p') = =m, C dx,

Px

d' d 3o. 1
4u 2 + 8—+ —- m, ~

A (u) = 0, u =x' g 0. (8)
dg dg p g j

This equation has a solution with only positive-
frequency components

S+(x, m )

.v + 1 (1)(. [(
. )2)I/2)

m, [(x -i') )'"

using the standard notation for Bessel functions.
In contradistinction to the free case (v =1), the

integral with v = (1 —3n/w)"2 has no divergence
at x = 0 [corresponding to infinite k' in Eq. (12)]
and consequently the self-mass integral is finite.
Evaluating the integral (13), one obtains for Ip' t

(m 2
1

'1- v'

1'1+v 1-v p'

a (x, m ) =- a (-x, m ).
v 1 v

(10)

where q is a positive-timelike vector and the in-
dex v of the Hankel function is v =(I -3n/w)'".
A solution with only negative frequencies is given

by

from which follows, for P'=-m, ',
C =mi.

From Eq. (2) the Fermion propagator is

SF'(P) = [m(P') —ip')/[m'(P') +P' - i~ )

(14 )

(15)

From Eq. (7) it follows that the solution A(x) has
the form of a Feynman amplitude:

A(x) =C[e(t) ~ (x, m ) -e(-t) ~ (x, m ))

=C a (x, m),

We could now proceed to solve Eqs. (7) and (11)
for m(k'), or, equivalently, to analytically con-
tinue expression (14), and insert the result in
Eq. (15). At present, however, we are only in-
terested in a zero-order propagator which is
also suitable for ultrahigh momenta. For this
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purpose one may approximate expression (15)
by

Inserting A(x) from Eqs. (11) and (14') one ob-
tains

S '(x, m)=m n (x, m)-P ~ (x, m).

For v =1 this is the usual free propagator. As
expected on general grounds4 the total propagator
is not less singular at x' = 0 than the free one,
but, as we are working in the Landau gauge, only
the first term on the right-hand side contributes
to the self-energy integral.

Because ~~F(x, m) and Iar(x, m) have the same
a.symptotic behavior for large x' (small momenta),
one may in this region use the free propagator as
a zero-order approximation. For small values
of x', however, „AF goes like x ~; expanding
x ~ in a power series of e, one obtains

p ~2 2
x =x [I +(3o./2v) logx+ n ( ~ ~ ~ ) + ~ ~ ~ ].

The convergence of this expression becomes poor
for values of x of the order of exp(-2v/3a) crude-
ly corresponding to momenta of the order of
mexp(2w/3o. ). Although the left-hand side gives
a finite result if inserted in the self-mass in-
tegral (12), this is not true of any of the indi-
vidual terms on the right-hand side. In partic-
ular the first term reproduces the well-known
logarithmic divergence of the lowest order per-
turbation theory.

In order to compensate for this divergence it
is usual to introduce either an infinite bare fer-
mion mass or a cutoff into the theory. As we
saw, the assumption of a zero bare fermion mass
results in the usual renormalized quantum elec-

trodynamics. The present approach has several
attractive features. The basic equations of the
theory are better defined than in the case of an
infinite bare mass, the mass renormalization is
finite without the use of a cutoff, and a connec-
tion between the massive charged leptons and
the massless neutral ones appears. Further-
more, the dilatational invariance of the theory
is appealing from a general point of view' and
could justify some hope for a calculation of the
e-p mass ratio and of the ratio between the mass
scale of the lepton system and that of the group
of strongly interacting particles. 'y'
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The figure numbers and captions should be in-
terchanged for Figs. 2 and 3. Figure 2, the reso-
nance with and without stress, is at the upper
left; Figure 3, the resonance after preferential
bleaching, is at the lower right.

315


