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ABSTRACT 

 

This study employs an ARMA-GARCH-EVT modeling approach to capture marginal features 

and Vine copula models to understand tail dependence in a portfolio of 60 stocks listed on the 

Brazilian stock market, specifically the Ibovespa. Throughout this analysis, we focus on 

portfolio optimization using five key investment performance metrics, including Information 

Ratio, Sharpe Ratio, and Sortino Ratio. These optimizations were carried out at two rebalancing 

frequencies, all focusing on risk mitigation and index optimization, and considering market 

transaction costs. In total, we propose 20 portfolios to achieve a positive Alpha on the Ibovespa 

Index. Notably, one of the significant findings of this study is the ability to achieve positive 

excess returns compared to the Ibovespa Index during 2019 and 2020. It is worth noting that 

this superior performance is particularly noteworthy, as seen, in terms of cumulative returns, in 

19 of the 20 portfolios proposed in this dissertation. 

 

Keywords: Portfolio optimization. Vine-Copula. Extreme value theory. Ibovespa. 



 
 

RESUMO 

 

Este estudo emprega uma abordagem de modelo ARMA-GARCH-EVT para capturar 

caracterís- ticas marginais e modelos de cópula Vine para entender a dependência da cauda em 

uma carteira de 60 ações listadas no mercado de ações brasileiro, especificamente o Ibovespa. 

Ao longo desta análise, nos concentramos na otimização do portfólio usando cinco métricas 

principais de desempenho de investimento, incluindo Informatio Ratio, Índice de Sharpe e 

Índice de Sortino. Essas otimizações foram realizadas em duas frequências de rebalanceamento, 

todas com foco na mitigação de riscos e na otimização dos índices, e considerando os custos de 

transação de mercado. No total, propomos 20 carteiras com o objetivo de atingir um Alpha 

positivo no Índice Ibovespa. Notavelmente, uma das descobertas significativas deste estudo é a 

capacidade de obter retornos excedentes positivos em comparação ao Índice Ibovespa durante 

2019 e 2020. Vale ressaltar que esse desempenho superior é particularmente digno de nota, 

como visto, em termos de retornos acumulados, em 19 dos 20 portfólios propostos nesta 

dissertação. 

 

 

Palavras-chave: Otimização de portfólio. Vine-Copulas. Teoria de valor extremo. Ibovespa. 
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7  

1 INTRODUCTION 

 

The main goal of portfolio optimization is to find the optimal asset allocation that strikes 

a balance between maximizing returns and managing risk. In this case, the selection of an 

optimal portfolio depends on the initial assumptions about the behavior of the assets and the 

choice of a measure of risk. Markowitz (1952) is a pioneer in the construction of the optimal 

portfolio considering a trade-off between risk and return and proposing the Mean-Variance 

approach, which paved the way for the development of The Modern Portfolio Theory. This 

study proposes an ARMA-GARCH EVT Vinecopula model to capture the marginals, tail 

probability, and dependence structure of 60 assets, to perform portfolio optimization throughout 

the years 2019 and 2020. Five optimization criteria, namely Sharpe Ratio, Sharpe VaR, Sharpe 

CVaR, Sortino, and Information Ratio, are employed in the evaluation process. 

However, despite being a pioneering work in portfolio optimization, Markowitz 

(1952)’s work depends on certain assumptions that may limit its applicability in the real-world 

context. Firstly, it assumes that returns follow a normal distribution, which may not accurately 

represent the non-normal characteristics, such as fat tails and skewness, often observed in 

financial asset returns. Additionally, the approach only captures a linear dependence between 

financial returns, disregarding the more complex and dynamic nature of correlations in different 

market conditions. Secondly, the reliance on variance as a measure of risk is a notable 

limitation. Variance treats positive and negative deviations from the mean symmetrically. In 

financial markets, investors are typically more concerned about downside risk (losses) than 

upside volatility (gains). Other risk measures, such as downside deviation or semi-variance, 

focus specifically on negative deviations and may better capture the risk that investors are 

concerned about. Furthermore, nonlinear risk measures, such as Value at Risk (VaR) or 

Conditional Value at Risk (CVaR), may provide a more accurate representation of risk in such 

situations. 

The reasons explained above serve as strong incentives for applying copulas to capture 

the real dependence structure between assets. The copula model emerges as a more predominant 

approach and addresses the limitations of conventional linear models. Sklar’s theorem 

(Sklar,1959), a fundamental result that has guided the entire copula theory literature, states that 

any multivariate joint distribution function can be decomposed into its marginal distribution 

functions and a copula function that captures the dependence structure between variables. In 

other words, the theorem provides a way to separate the marginal distributions of variables from 
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their dependence structure, which can be useful for modeling purposes. The copula model 

accommodates marginal distributions and allows for a more flexible dependence structure, 

encompassing linearity, nonlinearity, or even tail-only dependence. Thus, the finantial time 

series literature has used ARMA-GARCH copula models, where the marginal time series are 

modeled by univariate ARMA-GARCH models, while the dependence structure is explained 

by copula models. 

A notable advancement beyond traditional copulas was achieved with the emergence of 

pair copulas. The pioneering work of Joe (1997) delved into constructing multivariate copulas 

adapted to various types of dependency structures. Unfortunately, the options for multivariate 

copulas are limited compared to the bivariate scenario, where a range of copula types exhibiting 

flexible and complex dependence patterns is available. The innovative work of Bedford e Cooke 

(2001) and Bedford e Cooke (2002) introduces the concept of regular vine (R-vine), a 

convenient graphical model for categorizing pair copula constructions, displaying a hierarchical 

structure. The authors also propose two distinct structure types of regular vine copula: drawable 

(D-vine) and canonical (C-vine). Additional insights into the properties and statistical inference 

of vine copula can be found in the works of Aas et al. (2009), Joe (2014), and Czado (2019). 

Dissmann et al. (2013) developed an automated strategy that uses a sequential approach 

to search for the optimal R-vine tree structure, pair-copula families, and parameter values for 

each asset. This process starts with identifying the first tree and its corresponding pair-copula 

families, followed by estimating their parameters. Using transformed variables, the 

specification of the second tree is based on the choices made in the first tree. They use a 

maximum spanning tree algorithm to select each tree, with edge weights reflecting large 

dependencies. Pair-copula are chosen independently using the Akaike information criterion, 

which performs well in this context. Finally, the sequential estimation approach is used for the 

corresponding pair-copula parameter estimation for D-vine and C-vine. Overall, this approach 

allows for a more efficient and accurate analysis of financial data. The authors tested this 

strategy in 16-dimensional financial data and found that their approach was highly effective. 

The results indicated that R-vine distributions provide a better fit than both C- and D-vines for 

this particular data set. This improvement allows us to expand the implementation of our 

approach to higher dimensions, which is critical for assessing the risk associated with larger 

financial portfolios. 

Patton (2006) extended the concept to model dynamic dependence and applied 

theSklar’s theorem to conditional copulas. In finance, copulas have been widely used in, mong 

others, in risk management (Chiou; Tsay, 2008; Kole; Koedijk; Verbeek, 2007), dependence 
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modeling (Genest; MacKay, 1986; Schweizer; Wolff, 1981; Wei; Zhang; Guo, 2004) and 

portfolio optimization (Wu et al., 2006; Kakouris; Rustem, 2014), among others. 

Tófoli, Ziegelmann e Silva Filho (2017) propose a novel method for modeling the 

dependence in financial return data over time by introducing Markov switching into the copula 

dynamics. The study investigates the dynamics of dependence and the models’ ability to predict 

capital losses, focusing on tail risk in risk management. They compare models based on Value-

at-Risk (VaR) forecasts for portfolios and find that their approach outperforms others in 

capturing time-varying dependencies, particularly during financial crises. In a subsequent study 

Tófoli et al. (2019), the authors introduce a dynamic D-vine copula model for analyzing 

multivariate financial return data, demonstrating its effectiveness in capturing time-varying 

dependencies and improving VaR forecasts, especially during bear markets. The findings 

suggest valuable insights for risk management in different market conditions, highlighting the 

model’s superior predictive accuracy compared to static models. 

In terms of empirical applications in the area of portfolio management, Zhang et al. 

(2014) explore the application of C-, D- and R-vine for 10 international stock indices. Based on 

the structure estimated by each vine copula model, they simulate returns for each series and 

measure the VaR and ES for the international stock portfolio. This article indicates that the Vine 

copula model is more accurate and reliable in risk prediction compared with traditional 

methods, such as: mean-variance (MV), historical simulation (HS) and multi DCC-GARCH 

(DCC). The authors demonstrate that Vine copula models are able to effectively forecast the 

VaR of the international stock markets portfolio on the base of VaR measurement, and D-vine 

copula is superior to other copulas. 

Low et al. (2013) investigate the ability of using C-vine copula models to forecast 

returns for portfolios from 3 to 12 assets could produce superior investments performance 

compared to traditional methods. The authors assume that investors have no short-sales 

constraints and a utility function characterized by Conditional Value-at-Risk (CVaR) 

minimization. They examine the efficient frontiers produced by each model and, as the 

traditional Mean-Variance (MV) model does not take into account asymmetry in return 

distributions, there is a clear need for more advanced portfolio management strategies that 

incorporate asymmetries into the forecasting process and during the optimization of the 

investor’s utility function. Furthermore, the article also shows that as the number of assets in 

the portfolio increases, modeling the dependence structure across the assets has a greater 

impact. They conclude that Clayton C-vine copulas are ’worth it’ when managing portfolios of 

high dimensions due to their ability to better capture asymmetries within the dependence 
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structure than either the Clayton Standard Copula or multivariate normal models. 

In light of the recent Covid-19 pandemic and increasing volatility at global financial 

markets, a requirement for good estimation of risk measures, such as VaR and ES, has become 

even greater for any national institution and asset management. Zhang, Zhang e Lee (2022) 

explore the impact of the COVID-19 pandemic on the risk spillover structure and comparatively 

analyze the changes in the risk spillover structure before and after the pandemic. The authors 

aim to construct the GARCH-Copula-CoVaR model to improve the inadequacy of the quantile 

regression measure in previous studies and to explore the direct spillover value between 

important global stock markets before and after the pandemic through a bidirectional spillover 

matrix. They also analyze the indirect infection path in risk spillover and obtain the impact of 

the pandemic on an indirect path by measuring the indirect spillover value with the R-vine 

structure. The empirical results of this paper suggest that the COVID-19 pandemic has a 

significant impact on the risk spillover structure of the global stock market. The authors find that 

the direct spillover value between important global stock markets has increased significantly 

after the pandemic, indicating that the systemic risk of the global stock market has increased. 

They also find that the indirect spillover path in risk spillover has changed significantly after 

the pandemic, and the impact of the pandemic on the indirect path is more significant than that 

on the direct path. The authors identify key nodes for risk prevention and provide policy 

implications for global financial risk management. 

Sommer, Bax e Czado (2023) focus on extending the estimation of unconditional risk 

measures and introduce a novel algorithm for forecasting conditional risk measures, particularly 

Expected Shortfall (ES) over April, 2020 and October, 2021. The goal is to measure the risk of 

large asset portfolios in a conditional setting using a stress factor, providing more accurate 

estimation of various risk measures for financial portfolios. The application of a flexible class 

of vine copulas, specifically D-vine copulas, allows for the determination of the conditional 

distribution of portfolio components given a stress factor. This approach helps model complex 

dependence structures and adequately incorporates potentially high-dimensional dependence in 

financial portfolios. Using European and American market indices as stress factors, they find 

that a portfolio of the largest Spanish stocks could potentially serve as a hedge in the American 

market, but not in the European market. The sensitivity of the risk measure to the market is 

noted to be higher for Spanish assets. 

In terms to risk management, Han e Li (2020) apply mixture of vine copulas to describe 

the distribution of assets returns, they use a rolling window to forecast the worst-case CVaR 

(WCVaR) of multi-assets portfolios. The first portfolio composed of ten industry indices of 
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Chi- nese equities which includes Energy, Materials, Industrials, Consumer Discretionary, 

Consumer Staples, Health Care, Financials, Information Technology, Telecommunication 

Services and Utilities. Their results show that mixture C-vine copula performs best in terms of 

sharpe ratio, average returns, the expected maximum drawdown, total return and cumulative 

returns, followed by the mixture R-vine, while mixture D-vine method performs the worst. 

Meanwhile, the second portfolio composed by five representative of the major asset classes in 

China: SHIBOR1W (representing cash), Wind full A Index (representing stock market), 

ChinaBond Composite Total Return Index (Total Value) (representing bond market), SSE Fund 

Index (representing fund market) and Wind Commodity Index (representing commodity 

market), the mixture of R-vine copula performs better in terms of sharpe ratio, average returns, 

total returns and cumulative returns. 

A novel approach proposed by Al Janabi, Ferrer e Shahzad (2019) investigate the 

liquidity-adjusted Value-at-Risk (LVaR)1 optimization of a portfolio consisting of stock market 

indexes of the G-7 countries along with gold, a global commodity index and the cryptocurrency 

bitcoin. To validate the framework performance, they compare out-of-sample of optimal 

allocations derived by the vine copula based LVaR optimization approach under various 

scenarios (e.g., only long positions, both long and short sales with budget restrictions, and 

different liquidation periods). The study suggests that the vine copula-based LVaR optimization 

approach outperforms the traditional MV VaR model, leading to a relevant improvement in 

optimal portfolio selection under various operational and budget constraints. The out-of-sample 

analysis further confirms the superior performance of the vine copula-based LVaR approach 

over other frameworks, including Markowitz’s MV method and the equally weighted portfolio 

strategy. 

To address the heavy tails present in return series, Longin e Solnik (2001) introduced 

the Extreme Value Theory (EVT) as a powerful tool for dissecting financial data characterized 

by clear deviations from normality. EVT operates as a methodological framework designed to 

explore extreme values, making it an important tool for capturing rare events that exist in the 

distribution’s tails. This theory has attracted considerable attention from researchers seeking to 

delineate and comprehend rare occurrences within the field of finance, quantitative risk 

management, and the insurance market (Tsevas; Panaretos, 1998; Diebold; Schuermann; 

 
1 According to the CFA (Chartered Financial Analysts) Institute, liquidity risk represents any risk of 

economic loss because of the need to sell relatively less liquid assets to meet liquidity requirements; the 

risk that a financial instrument cannot be purchased or sold without a significant concession in price 

because of the market’s potential inability to efficiently accommodate the desired trading size. 

 



12 
 

Stroughair, 1998; Bensalah, 2000; Embrechts; Meister, 1997; Embrechts; Resnick; 

Samorodnitsky, 1999; Embrechts, 2000). EVT focuses on modeling the stochastic patterns 

governing extreme events situated in the tails of probability distributions. The primary objective 

of EVT lies in forecasting the probabilities associated with infrequent events and drawing 

meaningful comparisons with past recorded instances. 

The application of GARCH-EVT-Copula models to risk management has been the focus 

of several studies. Wang et al. (2010) measure the risk of a multi-dimensional foreign exchange 

rates portfolio. Bhatti e Nguyen (2012) suggests the applicability of a conditional EVT and 

time-varying copula for modeling the tail dependency between stock markets. Huang e Hsu 

(2015) consider two GARCH EVT-Copula models for simulating future stock market returns, 

employing a rolling window to compute the optimal weights based on the Min-CvaR allocation 

for the out-of-sample period. They also manage four rebalancing strategies - daily, weekly, 

biweekly, and monthly - for each model. Sahamkhadam, Stephan e Östermark (2018), explores 

portfolio optimization using GARCH-EVT-Copula models and ARMA-GARCH-EVT-Copula 

models, employing three portfolio optimization techniques (Min-CVaR, GMV, and CET) to 

calculate the optimal weights of different portfolios with different rebalancing strategies, 

without transaction costs. 

Our work follows the approach of Sahamkhadam, Stephan e Östermark (2018), utilizing 

an ARMA-GARCH model as a foundational tool in portfolio optimization. This model serves 

as a basis for capturing essential characteristics in financial series. Our data is composed of 60 

assets presented in the Ibovepa Index. To improve the GARCH model specification and provide 

a more accurate description of the dynamic volatility structures of each asset, we improved the 

specification of the GARCH model using the AIC criterion. Testing three GARCH families 

(GARCH, EGARCH, GJR-GARCH) for each asset in every iteration - a novel comparative 

approach within the existing literature. Subsequently, we employ the Extreme Value Theory 

(EVT) to explore and model the extreme values present in the tail in every iteration. Moving 

forward, we adopt the automated strategy proposed by Dissmann et al. (2013) to identify the 

optimal family copula model for each asset pair. This selection process is based on Kendall’s 

Tau maximization, thus determining the most suitable vine structure for our dataset. Then we 

incorporate the parameters from the ARMA-GARCH models and dependency structures from 

the vine copula models. To obtain optimal portfolio allocations, we perform the optimization 

of five different criteria (Sharpe Ratio, Sharpe Ratio VaR, Sharpe Ratio CVaR, Sortino Ratio, 

and Information Ratio). Furthermore, the central objective of our study revolves around returns 

to outperforming benchmarks. We achieve this by combining two different Vine copula models, 
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different portfolio optimization techniques, and two rebalancing frequencies, culminating in the 

creation of twenty different portfolios. 

This work strongly contributes to the existing literature in several dimensions. Firstly, 

we propose a vine copula approach for 60 assets, a higher dimension than most of the GARCH- 

EVT-Copula literature. Notably, our best portfolio - weekly rebalancing C-Vine Information 

Ratio - in terms of annualized returns, gave us an excess of 217.43% over the Ibovespa 

benchmark and 112.12% over the daily rebalancing Markowitz portfolio. This result takes into 

account B3’s trading fee for local investment funds and clubs, which amounts to 0.023% of the 

financial value of the transaction. Our empirical investigation uses daily data of 60 Brazilian 

stock prices presented in the Ibovespa Index during the period 4 February 2014 to 30 December 

2020. The primary findings indicate portfolios exhibit increasing risk and reduced 

diversification over time. However, as our goal is to propose an approach capable of achieving 

positive returns above the Ibovespa Index, our emphasis is on constructing a highly flexible 

model devoid of constraints. Subsequent research efforts could explore imposing limitations on 

asset weights to avoid excessive concentration in only a few. Additional criteria focused 

exclusively on minimizing Value at Risk (VaR) and minimizing standard deviation may also 

be considered in future investigations. Secondly, this study is focused on an entirely quantitative 

methodology, using a rolling window made up of 1,223 daily returns in all calculations, the 

only fixed results in the out-of-sample are the vines structure. This involves re-estimating all 

GARCH, EVT, and vines parameters at each iteration. Additionally, we evaluate three different 

GARCH models for all assets and select the optimal model for each day based on the Akaike 

Information Criterion (AIC). This approach provides us with a more adaptable model for all 

out-of-sample data, resulting in a superior fit to our dataset through continuous model 

refinement. 

The rest of the dissertation is organized as follows. Chapter 2 presents the 

methodology, including the ARMA-GARCH model, Extreme Value Theory, Vine copula 

model, and opti- mization criteria employed in our study. Moving on to Chapter 3, we provide 

a comprehensive statistical description of the dataset and a detailed exposition of our empirical 

findings. Finally, Chapter 4 concludes our analysis. 
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2 METHODOLOGY 

 

This chapter describes the ARMA-GARCH-EVT-Vinecopula and the maximization 

criteria for the optimal weights for portfolio allocation. 

 
2.1 ARMA-GARCH FORECASTING 

A range of time series models have been proposed in the literature to explain the 

dynamics of financial time series and its characteristics. The applications of the Autoregressive 

Conditional Heteroscedasticity (ARCH) model introduced by Engle (1982) or its extension 

GARCH by Bollerslev (1986) in finance field have become common. Following previous 

studies, we adopt the univariate ARMA(1,1)-GARCH(1,1) model for the assets to obtain our 

marginal distribution, defined as follows: 

 
 where ri,t is the actual return for asset i = 1, 2, ..., d, zit is the standardized error, and the 

parameter restrictions are ωi > 0, αi ≥ 0, βi ≥ 0, αi + βi < 1, φi + θi ̸= 0. Following 

empirical studies, we assume zi,t follows Skew-Student t distribution proposed by Fernandez e 

Steel (1998). 

To attain optimal results, we assessed two additional GARCH models for each asset 

and compared their performance with the initial model using the Akaike Information Criterion 

(AIC). 

 
2.1.1 EGARCH 

Nelson (1991) introduces the Exponential GARCH model to overcome some 

limitations that need to be addressed in the GARCH (p, q) model. One limitation is its inability 

to provide distinct responses to returns with different signs but the same absolute value. 

Additionally, the non-negativity constraints on the volatility equation parameters can lead to 

increased volatility with any increments in the absolute values of returns, which eliminates 

random oscillatory behavior. 

An exponential generalised autoregressive conditionally heteroscedastic model with 

order p = 1 and q = 1, denoted by EGARCH(1, 1), is defined as  
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where γi represents the asymmetry parameter, also known as the leverage effect. Responsible for  

positive and negative shocks, making it a valuable tool for capturing the dynamics of financial 

return data. 

 
2.1.2 GJR-GARCH 

Proposed by Glosten, Jagannathan e Runkle (1993) the GJR-GARCH can capture the 

asymmetry and fat tails in the distribution of returns. This model includes an additional 

parameter to capture the impact of negative returns on volatility, as well as a kurtosis parameter 

to capture the degree of fat tails (γi). The GJR-GARCH(1,1) can be written as 

 

 

The GJR-GARCH and T-GARCH (Threshold GARCH) models have some similarities, but they  

differ in one key aspect: the GJR-GARCH includes the skewed Generalized Error Distribution, 

whereas the T-GARCH model does not account for the shape parameter. 

 
2.2 TAIL BEHAVIOR 

 

                    The tail behavior of the asset returns can be modeled by extreme value theory, specifi- 

cally through the peak over threshold (POT). When integrated with an ARMA(p,q)-GARCH(1,1) 

model, this approach allows us to derive the marginal distribution function Gj(zˆj) for ith asset. 

We achieve this by employing the parametric generalized Pareto distribution (GPD) to model the 

lower and upper tails, while the middle part is approximated using the Gaussian kernelwhere 

superscripts l and r denote the left and the right tails, respectively. β is the scale parameter and ξ 

is the shape parameter. When ξ < 0, it indicates that the distribution has a finite tail, if ξ > 0 the 

distribution has a fat tail, and when ξ = 0 it indicates that the distribution has a thin tail. n is the 

number of observations and k is the amount of observations beyond threshold u. 

Selecting an appropriate threshold u is the main key of this approach. If the threshold is 

set too high, little data above the threshold will lead to high variance. On the other hand, if the 

threshold is set too low some observations may not belong to the extremes, which will lead to 

estimation bias. Previous studies have recommended different threshold levels or methods for 
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determining the optimal level (McNeil e Frey (2000) and Longin e Solnik (2001) for example). 

 

 

2.3 INTRODUCTION TO COPULAS 

A copula is a mathematical function that describes the relationship among multiple 

random variables while taking into account their individual distributions. It is defined as a 

cumulative distribution function (CDF) with uniform marginals on the unit interval. This means 

that the copula function operates on variables that are transformed to have uniform distributions 

between 0 and 1, see for example, Joe (1996) and Nelsen (2007). 

According to the theorem of Sklar (1959), for random continuous variables, if we have 

the cdf of each individual variable, denoted as Fi(yi) for Yj, then combining this cdf through 

a copula function C(F1(y1), . . . Fd(yd)) yields a multivariate distribution for Y = (Y1, ..., Yd) 

with the desired marginal distributions Fi, i = 1, . . . d. Conversely, if we have a continuous 

multivariate distribution with individual marginal cdf F1, ..., Fd, then there exists a unique copula 

function C that corresponds to this distribution, such that 

F(y) = C (F1 (y1) , . . . , Fd (yd)) , ∀y = (y1, . . . , yd) . (2.5) 

The corresponding density is 
       

 

where c(u1, . . . , ud) is the d-dimensional copula density and fi, i = 1, . . . , d, are the 

corresponding marginal densities. 

Copulas have been combined with time series models for modeling financial series 

returns, i.e., copula modeling operates with the standardized residuals obtained from ARMA- 

GARCH models. 

In the copula context, vines emerged as a solution to overcome limitations in the 

flexibility of traditional copula models. In particular, such Archimedean copulas, characterized 

by typically having only one or two parameters, impose strict dependence properties by 

assuming ex- changeability and uniformity across all multivariate margins. Elliptical copulas as 

the Gaussian copula, operate under the assumption of a single global dependence structure that 

applies uniformly to all pairs of variables. Although the Student-t copula allows for symmetric 

tail dependence, it suffers from a drawback: it has only a single parameter to govern the tail 

dependence of all variable pairs. The category of vine copulas adeptly addresses the limitations 

associated with elliptical and Archimedean copulas, as well as other copulas. Simultaneously, it 

leverages their advantageous features in the bivariate case. 

 

 

2.4 VINE COPULAS 
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Introduced by Aas et al. (2009), the vine structure can be illustrated in three 

dimensions. Assuming that all necessary densities exist, let Y = (y1, y2, y3)′ ∼ F, then 

f (y1, y2, y3) = f1 (y1) f (y2 | y1) f (y3 | y1, y2) .

 
(2.7) 

Using Sklar (1959) theorem (2.1), it follows 

 

where c1,2 is a copula function that links y1 and y2 and F1, F2 and F3 are the respective 

marginal distribution functions. Similarly, the second conditional density in Eq.(2.7) can be 

factorized as: 

 

 

 

Combining the Equations (2.7)-(2.9), the joint density of the three-dimensional can be obtained 

as follows: 

 

The joint density function can be calculated as the product of the marginal densities and three 

bivariate copulas that collectively form the vine copula. The copulas c1,2(F1, F2) and c1,3(F1, F3) 

are unconditional, and the copula c2,3|1(F2|1, F3|1) is conditional on y1. Each of these copulas 

might not belong to the same copula family, indicating that the vine copula provides extensive 

flexibility for modeling dependency in high-dimensional data. These findings can be extended to 

the n-dimensional case. 

Proposed by Joe (1996), the marginal conditional distributions, F(y | v), which are 

necessary for the pair-copula decomposition of a multivariate density, can be computed as: 
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where Cxv

j |vj 
is a bivariate copula and vj denotes a vector with the jth component vj removed. 

The decomposition in Eq.(2.7) is not unique.   f (y1, y2, y3) can be expressed as 

f1, f2, f3c1,3c2,3c1,2|3 or as f1, f2, f3c1,2c2,3c1,3|2, which implies that the choice of the particular vine 

copula structure, the organization of the different possibilities of decomposition, becomes a 

crucial issue. 

Vines were introduced by Joe (1996), Bedford e Cooke (2001) and Bedford e Cooke 

(2002) and described in more detail in Kurowicka e Cooke (2006) and Kurowicka e Joe (2010). 

Following the definition of Kurowicka e Cooke (2006), a regular vine (R-vine) on d 

variables is a sequence nested set of d − 1 trees such that each, where the edges of the (j − 1)th 

tree. The proximity condition ensures that two nodes in the (j − 1)th tree are connected by an 

edge only if these nodes share a common node in the jth tree. It’s worth noting that the initial 

tree’s set of nodes comprises all indices from 1 to d, while the set of edges consists of d − 1 

pairs of these indices. In subsequent trees, the set of nodes includes sets of pairs of indices, and 

the set of edges is formed by pairs of pairs of indices, and so on. 

According to Theorem 4.2 of Kurowicka e Cooke (2006), the R-vine copula density is 

given by 

where cj(e), k(e) | D(e) represents a bivariate conditional density copula with j(e) and k(e) as the 

conditioned nodes, and D(e) as the conditioning set. The parameter e = j(e), k(e)|D(e) is an 

edge that belongs to the edge set ϵ = E1, . . . , Ed−1. YD(e) is the vector of variables conditioned 

by the components of the conditioning set D(e). 

A particular case of R-vines, which we considered in this work, is the canonical vines 

(C-vines). An R-vine is called C-vine if each tree Ti has a unique node with degree d − 1, the 

root node. According to Aas et al. (2009), the C-vine density can be write as 
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The model selection for both C-vine and R-vine copulas structures are determined using the 

maximum spanning tree approach proposed by Dissmann et al. (2013). The optimization problem 

for each tree is established based on the Kendall correlation coefficient between pairs of stock 

markets. The procedure begins with the calculation of the empirical Kendall’s Tau τˆi,k for all 

conceivable pairs of variables denoted as {i, k}, 1 ≤ j ≤ k ≤ d. Subsequently, the primary 

objective is to identify the spanning tree that maximizes the aggregate of absolute empirical 

Kendall’s Tau values., i.e., 

 

 
 
 

for each pair {i, k} identified within the chosen spanning tree, the procedure selects a copula 

and estimates the corresponding parameter(s), for i = 2, . . . , d − 1. The next step involves 

computing the empirical Kendall’s Tau τˆi,k|D for all conditional variable pairs {i, k|D} that 

can be part of the tree Ti. Among these edges, select the spanning tree that maximizes the sum 

of absolute empirical Kendall’s taus, i.e., 

 

 

 

Then for each {i, k|D} in the select spanning tree, we computed observations F(y | v) from 

the estimated pair copulas using the Eq. (2.11). 

 

 
2.4.1 The portfolio allocation criteria 

In this dissertation, we will explore five different criteria for determining the optimal 

weights for portfolio allocation. 

 

2.4.2 Sharpe Ratio 

The Markowitz’s optimal portfolio theory has two main characteristics: the expected 

return maximization and the risk measure (variance) minimization. Several studies in recent 

decades have focused on Markowitz’s mean-variance portfolio, and one important extension is 

the maximization of the Sharpe ratio (SR), proposed by Sharpe (1963), Sharpe (1994). The SR 

is defined as the average return earned over a risk-free rate per unit of volatility or total risk. This 

means how much expected return your allocation is accept when adding a unit of risk. 
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t   t 

Let’s suppose a d-dimensional portfolio with asset returns rt = (rt1, rt2, ..., rtd), i = 

1, 2, ..., d, asset weights wt = (wt1, wt2, ..., wtd) and a d × d covariance matrix ∑ at time t.  

 

 

Then the portfolio expected return and variance are, respectively, 𝒘𝒕
𝑻 rt and 𝒘𝒕

𝑻 ∑ wt. The 

Sharpe Ratio maximization can be expressed as follows: 

 

 

 
 

2.4.3 Sharpe Ratio VaR 

 

Since investors are primarily concerned with downside risk rather than windfall gains, 

variance alone may not be an effective tool for reflecting the risk profile of cautious investors. 

Consequently, Value-at-Risk (VaR) is proposed as a more suitable risk measure in risk manage- 

ment. 

The Sharpe Ratio in combination with the Standard Deviation, when faced with a high 

variance caused by extraordinary gains, can penalize the optimization process, resulting in asub-

optimal portfolio allocation. To address this challenge, many studies have been considering 

VaR as the risk measure in combination with Markowitz’s mean-variance portfolio (Consigli, 

2002). So, we propose a Sharpe Ratio that incorporates VaR to provide a more accurate and 

comprehensive assessment of risk-adjusted returns. Following Rockafellar, Uryasev et al. 

(2000) the probability of f (wt, rt) not exceeding a threshold α is given by 

  

where f (wt, rt) is the loss function for asset weights wt and p(rt) is the probability of rt at time 

t. From the optimization, wt is the vector of asset weights that maximizes the Ratio. In this work, 

we chose an α = 5%. 

By incorporating VaR, we can rewrite equation (2.16) as follows: 
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2.4.4 Sharpe Ratio CVaR 
 

 

Another variation of the Sharpe Ratio is applying the CVaR as an alternative for losses 

beyond the VaR threshold (Xu et al.,  2016). Following Rockafellar and Uryasev (2000, 2002) 

algorithm, the CVaR’s integral is: 

 

where β is a specified confidence level value (here 0.9). It integrates the joint distribution of 

portfolio returns and weights over a range where the portfolio returns exceed a certain threshold 

αβ(wt). The result represents the expected tail loss of the portfolio, given that it falls in the tail 

region beyond the threshold (α). 

The maximization of the Sharpe Ratio CVaR problem can be expressed as: 

  

 

2.4.5 Sortino Ratio 

 

The Sortino ratio, a variation of the Sharpe ratio, utilizes downside deviation as the 

risk measure instead of standard deviation. In this approach, only returns that fall below a 

user-defined target, or required rate of return, are considered risky. This approach provides a 

more focused assessment of downside risk and can be used to evaluate portfolio performance 

with greater accuracy. 

Sortino and Brian Rom were responsible for coining the term "Sortino ratio" in the 

field of investment terminology. The first mention of this ratio was in the August 1980 issue of 

Financial Executive magazine, and its first calculation was published in a series of articles in 

the Journal of Risk Management in September 1981. These references highlight the historical 

development of the Sortino ratio and its importance in the field of finance. 

The target downside deviation can be mathematically defined as the root-mean-square 

(RMS) of the deviations between the realized returns and the target return, where all returns 

above the target return are treated as underperformance of 0. This approach enables more 

precise measurement of downside risk and is an important component in the calculation of the 

Sortino ratio. Mathematically, 
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where r f is the risk free asset or a target return. 

Then, 

 

 

2.4.6 Information Ratio 

 

The information ratio (IR) is a crucial metric for evaluating portfolio performance. By 

taking into account the excess returns of a portfolio compared to a chosen benchmark, typically 

an index representing a specific sector or industry, as well as the volatility of those returns, the 

IR helps to gauge a portfolio manager’s skill in generating excess returns. 

To provide a more nuanced picture of performance consistency, the IR incorporates a 

tracking error component, which measures the degree to which a portfolio’s returns "track" the 

performance of the chosen benchmark. A low tracking error indicates consistent 

outperformance of the benchmark over time, whereas a high tracking error implies greater 

volatility and less reliable excess returns relative to the benchmark. By considering both excess 

returns and tracking error, the IR offers a more comprehensive assessment of portfolio 

performance than traditional metrics that focus only on returns: 

 

 

 

where Rb is the return or fund used as benchmark. 

The maximization problem of the Information Ratio can be expressed as, 

 

 

 

 



23 

 

2.4.7 Portfolio Rebalancing 
 

 

Rebalancing is the process of realigning the weights of an asset’s portfolio, which 

means, buying or selling, periodically, assets in a portfolio to maintain an original or desired 

level of return or risk. However, the main question for investors is how often a portfolio should 

be rebalanced and whether the benefits of rebalancing outweigh the costs of doing so. To test 

the cost transaction in portfolio rebalancing, we test two frequencies - daily and weekly (5 

business days)- and apply the B3 trading fee, settlement fee, and registration fee to assets funds 

and local investment clubs. The accumulated cost is equivalent to 0.023% of the financial value 

of the transaction, equivalent to $0.23 for every $1,000 (purchase or sale). 

 
2.4.8 Steps 

In this chapter we present step by step each procedure of this dissertation. First, we 

present the procedure for obtaining the weight matrix (W m) for each m portfolio and then we 

present the steps simulating the portfolio manager’s trading. 

 
a) We employ three distinct models: ARMA(1,1)-GARCH(1,1) (Eq.2.1), ARMA(1,1)- 

eGARCH(1,1) (Eq.2.2), and ARMA(1,1)-gjrGARCH(1,1) (Eq.2.3). To select the 

optimal model for each asset, we utilize the Akaike Information Criterion (AIC). 

Subsequently, we estimate the model parameters using maximum likelihood estimation 

(MLE) and obtain the standardized residuals: 

 

b) We use estimated standardized residuals zt from step 1 to estimate the center of the distri- 

bution as Gaussian kernel and the upper/lower tails as a Generalized Pareto Distribution 

(GPD) (Eq. 2.4): 

 

 

c) We introduce the estimated uniforms vit into R-Vine (Eq. 2.12). Following the approach 

outlined in Dissmann et al. (2013), we begin by drawing the vine structure based on the 

Kendall correlation coefficient between pairs (Eq. 2.15). Subsequently, we proceed 

to estimate the parameters of each tree: 
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d) Generate 1000 sets of uniform random numbers (xn1, . . . xnd), with n = 1, ..., 

1000, for each series i = 1, ..., d. These uniform random numbers are then inserted 

into the estimated empirical vine copula structure obtained in step 3. As a result, we 

obtain 1000 sets of uniform random variables that inherit the estimated dependency 

structure from the empirical vine copula: 

 

e) We incorporate the simulated uniform û i using the estimated dependency structure 

into the inverse of the estimated cumulative distribution function from step 2. This 

enables us to estimate new standardized residuals, which are then utilized in portfolio 

optimization at time t. 

 
 

f) We compute the one-step ahead returns (µit) and the one-step ahead conditional volatility 

(σit ) for each asset using the specified ARMA-GARCH models identified in Step 1. Then 

we multiply the estimated conditional volatility by the vector of estimated standardized 

residuals, which added to the expected return for one step forward gives us 1000 

simulated returns for each asset: 

 

g) We utilize the one-step-ahead simulated returns rn obtained in the previous step and 

substitute them into the optimization criteria described in Chapter (2.5). This allows us 

to determine the optimal weights for each m portfolio, enabling us to construct the 

optimal portfolios based on the forecasted returns. In Appendix C we present the weights 

matrix for each portfolio. 

 

The next step is to simulate the portfolio manager’s trading. We start with an amount of 

$1,000,000 and the weight vector wm. The first trading happen in t, with the simulated returns 
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for t + 1: 

 

where Round (. . . , 0) is a function, as the name says, that rounds the number with 0 decimals. 

This function provides the portfolio manager with the quantities, in multiples of 100, that he 

needs to buy in t, this function avoids purchases or sales of quantities below 100, which would 

implicitly take him to the fractional market.2  

 

In simpler terms, the portfolio manager initiates asset purchases based on closing prices 

at time t. In the subsequent period, t + 1, they take into account the costs associated with the 

value of their portfolio from time t and adjust asset weights by buying or selling the difference 

between the weight vectors at t and t + 1. When new information emerges (rt+1) at t + 2, the 

portfolio manager considers the returns of Port f oliom between the trades at t and t + 1, 

incorporating this return into their portfolio value. 
 

 

 

 

 

 
2 The Stock Exchange’s fractional market is an environment that allows the purchase and sale of shares in small 

quantities – ranging from 1 to 99 units. However, the liquidity is usually lower compared to the full market, as 

there is a lower supply and purchase volume. 
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3 EMPIRICAL ANALYSIS 

 

 In this chapter we describe the database and present the results. 

 

3.1 DATA 

The dataset used in our analysis consists of daily adjusted prices for 60 stocks that are 

included in the Ibovespa Index, obtained from the Bloomberg terminal. We use the logarithmic 

returns, defined as log(pt−1/pt), where pt denote the price of an asset at time t. The data spans 

from February 4, 2014, to December 30, 2020, giving a total of 1723 observations. We 

implemented a rolling window of 1223 observations and left the years 2019 and 2020 as out-of-

sample. 

According to B3 (2023), the Ibovespa is the primary performance indicator of the 

Brazilian stock market and is constructed through a set of rules that include several criteria for 

selecting assets and determining their weighting. These criteria are designed to ensure that the 

index is representative of the market and is rebalanced periodically to maintain its relevance. 

Overall, the Ibovespa methodology is widely recognized and respected by investors and market 

participants. 

The methodology construction follows the rules outlined below: 

 

• Selection Criteria: To be among the assets that represent 85% in descending order of 

Negotiability Index (NI) (buffer 90%); 95% presence in trading sessions; 0.1% of 

financial volume in the spot market (standard lot); and not be a penny stock. 

• Weighting: Free float market value/cap 20% per company/cap 2x NI 

 

• Rebalancing: Every four months (1st Monday of January, May, and September) 

 

The weights and assets present in the Ibovespa index in our out-of-sample are present in the 6. 

Since we started forecasting on the first Monday of 2019, we have chosen to exclude 

assets that were added to the Ibovespa in mid-2019 and 2020. Additionally, companies such as 

LOGG3, BRDT3, and RAIL3, which were included in the Ibovespa index in January 2019, had 

their initial public offering (IPO) after February 2014 and were therefore not included in our 

forecast model. We were also unable to locate historical prices for SUZB3 before 10/11/2017, 

likely due to the company’s IPO on the B3 stock exchange in 2012 and subsequent transition to 

the Novo Mercado segment five years later. Lastly, VVAR3 is experiencing some convergence 

problems, leading us to prefer to exclude this asset from our sample. 

Our dataset consists of 60 assets, which collectively represent varying percentages of 

the total companies in the Ibovespa Index. Specifically, they represent 96.5%, 94.6%, 90.6%, 
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85.7%, 83.7%, and 90.6% of the Ibovespa portfolio for the months of January 2019, May 2019, 

September 2019, January 2020, May 2020 and September 2020, respectively. These 

percentages correspond to the six rebalancing of the Ibovespa index during 2019 and 2020. In 

Appendix A we present the daily returns of each asset. 

We acknowledge the presence of survival bias in our analysis. In our context, assets 

that were removed from the Ibovespa Index mid-sample should be excluded from the analysis, 

and new assets added to the index should be integrated into the data set. Despite this 

consideration, we made a deliberate choice to maintain a constant set of 60 assets throughout the 

analysis. This decision aligns with our objective of working with a substantial number of assets. 

Introducing new assets could potentially lead to a reduction in the dataset size, either due to 

convergence issues (KS test or ARMA-GARCH model orders) or a scarcity of observations. 

For instance, companies such as Azul SA (AZUL4) and Banco BTG Pactual (BPAC11) 

entered the stock market in mid-2017. However, we opted not to include these companies in our 

analysis because, as of their inclusion in the Ibovespa Index in May 2019 (AZUL4) and 

September 2019 (BPAC11), for each there were only approximately 500 historical observations 

available. In contrast, we utilized a rolling window of size 1,223 to estimate the model 

parameters, ensuring a more robust analysis despite the limited historical data for these specific 

companies. 

Table 1 provides descriptive statistics for the returns of the 60 assets. The Jarque- Bera 

test results indicate that the null hypothesis of normality is rejected for all series. This suggests 

that the returns of the assets do not follow a normal distribution. Specifically, only nine assets have 

a positive skewness (BRKM5, BTOW3, CIEL3, ELET3, ELET6, GOLL4, HYPE3, MGLU3, 

SANB11, USIM5). The presence of positive kurtosis in all series means that each series exhibits 

a sharper peak than a standard normal distribution. Furthermore, the Augmented Dickey-Fuller 

(ADF) suggests strong evidence to reject the null hypothesis of a unit root and conclude that all-

time series are stationary. 

As a benchmark to evaluate and validate the effectiveness of our model, we chose an 

equally weighted portfolio, the global minimum variance (GMV) portfolio, and the Markowitz 

portfolio. All of these portfolios are rebalanced at the same frequency as our portfolios and are 

constructed using the identical set of 60 assets from our sample. GMV and Markowitz are also 

performed using a moving window of 1,223 observations. 

 

3.2 RESULTS 

We utilize an ARMA-GARCH-EVT model to establish the marginal distribution for 

the innovations. In this model, we assume that the conditional distribution for the residuals 

follows a Skew-Student t distribution. To determine the best GARCH specification for each 

asset, we employ the Akaike Information Criterion (AIC) as a model selection criterion. As the 

GARCH specification evolves during the out-of-sample period, accompanied by changes in its 



28 

 
 

Table 1 – Descriptive statistics for the daily log returns 
 

TICKER Mean Std. dev. Skewness Kurtosis JB ADF 

ABEV3 0,0133 0,0171 -0,73 11,0763 8987,0357*** -12,329*** 

B3SA3 0,1251 0,024 -0,1129 5,4949 2179,1148*** -11,7809*** 

BBAS3 0,0611 0,0301 -0,4538 7,5447 4159,0202*** -11,9916*** 

BBDC3 0,0529 0,0233 -0,0502 5,2675 1999,9955*** -11,3488*** 

BBDC4 0,0653 0,0236 -0,0613 5,698 2340,2593*** -11,3171*** 

BBSE3 0,0469 0,0202 -0,1834 3,4104 848,3304*** -12,6689*** 

BRAP4 0,0865 0,0302 -0,3764 6,5125 3095,9382*** -11,0233*** 

BRFS3 -0,0333 0,0246 -0,7981 12,862 12093,7655*** -11,2941*** 

BRKM5 0,0326 0,0316 0,0934 19,5064 27392,6076*** -11,6888*** 

BRML3 0,0079 0,0263 -0,7388 10,7098 8416,1063*** -12,2231*** 

BTOW3 0,0696 0,0364 0,2802 3,4672 889,3591*** -12,5239*** 

CCRO3 0,012 0,0262 -0,0314 8,378 5055,2753*** -12,3817*** 

CIEL3 -0,0721 0,0272 0,4046 10,4219 7868,1966*** -11,0147*** 

CMIG4 0,0388 0,0296 -0,6015 7,43 4080,3115*** -10,7553*** 

CSAN3 0,0646 0,0239 -0,4793 5,4491 2205,4742*** -12,1292*** 

CSNA3 0,0739 0,04 -0,0287 4,4492 1426,9446*** -10,3805*** 

CVCB3 0,0352 0,034 -2,1557 35,4131 91597,0514*** -10,5352*** 

CYRE3 0,0621 0,0281 -1,1538 14,3746 15258,8769*** -10,6014*** 

ECOR3 0,0244 0,0282 -0,2868 6,7243 3280,7797*** -11,0119*** 

EGIE3 0,0508 0,0164 -0,0267 3,3162 793,1931*** -11,4117*** 

ELET3 0,1225 0,0368 0,6299 11,8575 10237,4686*** -11,4094*** 

ELET6 0,0991 0,0323 0,2315 7,3985 3957,9361*** -11,7516*** 

EMBR3 -0,039 0,0266 -0,8836 18,8529 25810,5285*** -11,3025*** 

ENBR3 0,0628 0,0202 -0,0259 5,1308 1897,0461*** -12,0655*** 

EQTL3 0,1044 0,0173 -0,5072 4,4184 1481,0317*** -10,8799*** 

ESTC3 0,0488 0,033 -0,2145 8,0295 4656,5821*** -10,8661*** 

FLRY3 0,0809 0,0208 -0,5592 6,2462 2900,5376*** -11,3834*** 

GGBR4 0,0295 0,031 -0,1828 3,5785 932,8625*** -10,5293*** 

GOAU4 -0,028 0,0348 -0,4004 5,0699 1898,2911*** -10,59*** 

GOLL4 0,0573 0,0485 0,0962 13,5902 13299,8338*** -11,4361*** 

HYPE3 0,0604 0,0206 0,1674 12,8215 11843,8937*** -12,6663*** 

IGTA3 0,0427 0,0228 -0,9433 13,5034 13383,8478*** -12,5339*** 

ITSA4 0,0699 0,0204 -0,1904 2,9664 645,1054*** -11,2813*** 

ITUB4 0,0643 0,0212 -0,0344 3,0694 679,8228*** -11,4025*** 

JBSS3 0,0682 0,0325 -0,3853 15,4903 17316,8138*** -13,0089*** 

KLBN11 0,0591 0,0193 -0,3561 6,9356 3501,3384*** -12,919*** 

KROT3 -0,0307 0,0329 -0,6739 7,1454 3808,1881*** -11,3166*** 

LAME4 0,0609 0,0249 -0,5683 9,1884 6172,6641*** -11,5574*** 

LREN3 0,0983 0,0234 -0,5842 11,2997 9291,8129*** -12,2136*** 

MGLU3 0,2743 0,0391 0,659 9,3885 6472,3851*** -11,2217*** 

MRFG3 0,0738 0,0302 -0,3089 10,7879 8407,2608*** -12,4253*** 

MRVE3 0,0739 0,026 -0,6125 8,6653 5515,447*** -11,5318*** 

MULT3 0,0371 0,0231 -0,5654 14,4025 15025,6987*** -12,7264*** 

NATU3 0,0665 0,0275 -0,5672 12,3828 11132,4719*** -12,3647*** 

PCAR4 -0,1065 0,0457 -28,0983 1022,7121 75491980,4322*** -11,5556*** 

PETR3 0,05 0,034 -0,8544 11,121 9115,0827*** -11,3292*** 

PETR4 0,0495 0,0342 -0,8495 10,4802 8116,349*** -11,1437*** 

QUAL3 0,0595 0,0291 -0,8144 22,8879 37898,3384*** -11,245*** 

RADL3 0,1309 0,0197 -0,0875 2,9428 626,8546*** -12,9934*** 

RENT3 0,1238 0,0268 -0,2557 13,1954 12554,8241*** -10,9006*** 

SANB11 0,1029 0,0239 0,0275 4,6434 1554,0812*** -10,9845*** 

SBSP3 0,0543 0,0251 -0,3757 6,2075 2816,5026*** -11,1323*** 

SMLS3 0,016 0,0342 -3,7897 52,3654 201477,6285*** -11,6463*** 

TAEE11 0,0827 0,0157 -0,2663 2,0829 333,6314*** -12,085*** 

TIMP3 0,0191 0,0222 -0,1148 4,657 1566,705*** -11,2989*** 

UGPA3 0,0045 0,0243 -0,5929 18,7445 25393,6638*** -10,5563*** 

USIM5 0,0164 0,0393 0,2715 5,2829 2032,1765*** -10,7143*** 

VALE3 0,0739 0,0302 -0,3544 7,8142 4433,9814*** -11,5262*** 

VIVT4 0,0211 0,017 -0,1795 7,1347 3675,8426*** -12,5993*** 

WEGE3 0,1377 0,021 -0,8307 13,7618 13833,4444*** -11,4051*** 

Fonte: Elaborated by the author. 
Note: The total number of observations is 1723 for each stock. The mean is expressed as a percentage. 
*** Denotes statistical significance at the 1% level. 
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parameters, Table 3 in Appendix b displays the outcomes of tests that exclusively compare the 

GARCH models using in-sample data and their associated AIC values. 

Additionally, just for the in-sample data Table 2 offers the estimated parameters and 

GARCH family classification for each asset within our training sample. Specifically, we present 

these details exclusively for the period spanning from February 4, 2014, to January 4, 2019, 

which is immediately before our forecast period. It’s important to note that during each iteration 

within the rolling window, we reestimate the parameters and evaluate the three GARCH models 

mentioned above using the AIC criterion to determine the optimal estimate. These estimated 

parameters reveal the distinctive characteristics and behavioral characteristics inherent to the 

model, providing valuable information about the specific dynamics of each asset. 

In summary, the key distinction among EGARCH (Eq. 2.2), GJR-GARCH (Eq. 2.3) 

and the usual GARCH (Eq. 2.1) models, are their treatments of volatility dynamics and 

asymmetry, as exemplified by the parameter γ in Table 2. EGARCH allows for flexible 

modeling of asymmetry through the use of logarithmic transformations. In contrast, GJR-

GARCH explicitly introduces an asymmetry parameter to capture different effects of positive 

and negative shocks. Meanwhile, the basic GARCH model assumes symmetric effects of shocks 

on volatility. 

The initial 45 assets are modeled by an EGARCH, 9 with GARCH, and 5 with GJR- 

GARCH. Only the assets BRFS3, CCRO3, CIEL3, CSNA3, GGBR4, GOAU4, MRFG3, 

NATU3, and PCAR4 had an estimated constant term (µi) equal or lower than 0, indicating a 

negative average return. In general, the coefficients (α and β) in the variance equation are 

significant for most series, implying that the GARCH models fit the volatilities of the return 

series reasonably well. Interestingly, the higher values in the β parameter suggest a high degree 

of persistence in volatility over time, in other words, large changes in volatility from the past 

are expected to have a lasting impact on volatility in the current period. 

We utilize extreme value theory to fit the Generalized Pareto Distribution (GPD) to the 

lower and upper tails of the standardized residuals. We apply the peak-over-threshold (POT) 

method, following the approach outlined by Wang et al. (2010). Specifically, we choose the 

10th percentile of the standardized residuals as the threshold. The estimated parameters, 

including u (threshold), ξ (scale), and β (location), for the upper and lower tails are presented in 

Table 3, again, the parameters are for the in-sample database only. 

As it was mentioned earlier, after fitting the GPD to the upper and lower tails of the 

standardized residuals and obtaining the marginal distribution, we use the R- and C-Vine 

structure obtained from the Eq. 2.14 to estimate the dependency structure between the assets. 

This incorporates the interaction or dependence of assets on each other within the portfolio. 

Following that, we generate 60,000 simulated uniform numbers, which are then transformed 

using the inverse function of the previously obtained marginal distribution for each series. This 

allows us to create 60,000 synthetic one-day-ahead returns. Using these simulated returns, we 

proceed to calculate the performance of different portfolios. Such as Information Ratio (IR), 
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Table 2 – GARCH parameters for daily log returns of assets in the training sample database 
 

TICKER GARCH model µ φ θ ω α β γ 

ABEV3 eGARCH 0.0004** 0.7858*** -0.8177*** -0.365*** -0.0741*** 0.9581*** 0.1304*** 

B3SA3 GARCH 0.0014*** 0.7879*** -0.8115*** 0*** 0.0608*** 0.9159***  

BBAS3 eGARCH 0.0018** 0.5248*** -0.5097*** -0.2392*** -0.027 0.9668*** 0.1856*** 

BBDC3 eGARCH 0.001* -0.2193*** 0.1741*** -0.2249*** -0.0071 0.971*** 0.1231*** 

BBDC4 eGARCH 0.0012** 0.4125*** -0.4574*** -0.132*** -0.0224 0.983*** 0.101*** 

BBSE3 GARCH 0.0007* 0.7915*** -0.8273*** 0 0.078*** 0.904***  

BRAP4 GARCH 0.0006 -0.099 0.128 0 0.0531*** 0.9454***  

BRFS3 eGARCH -0.0002 0.2595 -0.2183 -0.1342*** -0.0734*** 0.983*** 0.0428*** 

BRKM5 gjrGARCH 0.0007 0.5965 -0.5784 0*** 0.0035 0.9664*** 0.0406*** 

BRML3 eGARCH 0.0003 0.4659*** -0.5047*** -0.2464*** -0.0295 0.9677*** 0.1219*** 

BTOW3 eGARCH 0.0008 -0.1359*** 0.2043*** -0.8462** -0.014 0.8748*** 0.2881*** 

CCRO3 eGARCH -0.0002 0.5666*** -0.6375*** -0.2007*** -0.0358** 0.9737*** 0.124*** 

CIEL3 eGARCH -0.0001 -0.6658*** 0.6941*** -0.137*** -0.0664*** 0.9826*** 0.0696*** 

CMIG4 GARCH 0.0004 0.4699 -0.5033* 0.0003*** 0.1912*** 0.436***  

CSAN3 GARCH 0.0004 -0.2662 0.244 0*** 0.0617*** 0.9089***  

CSNA3 eGARCH -0.0002 -0.1151*** 0.15*** -0.0978*** 0.0069 0.9852*** 0.127*** 

CVCB3 gjrGARCH 0.0013** -0.7423* 0.7567** 0** 0.0605** 0.8683*** 0.047*** 

CYRE3 GARCH 0.0005 0.556 -0.5725 0** 0.0882*** 0.8489***  

ECOR3 eGARCH 0.0004 0.091*** -0.2107*** -0.1726*** -0.0581*** 0.9769*** 0.119*** 

EGIE3 eGARCH 0.0004 0.4916*** -0.5807*** -0.0378*** -0.0008 0.9956*** 0.0512*** 

ELET3 eGARCH 0.0008 -0.7929*** 0.8176*** -0.523 0.0314 0.9228*** 0.148*** 

ELET6 eGARCH 0.0011** -0.6335*** 0.6894*** -0.1854*** -0.0221 0.9734*** 0.135*** 

EMBR3 eGARCH 0.0003 0.0388 -0.1116 -1.3319 -0.0115 0.8292*** 0.1475*** 

ENBR3 eGARCH 0.0005 0.2193** -0.3883*** -0.0855*** -0.0299** 0.9893*** 0.0749*** 

EQTL3 eGARCH 0.001*** -0.4387*** 0.4135*** -0.6855*** -0.1256*** 0.9194*** 0.1496*** 

ESTC3 eGARCH 0.0003 0.5723*** -0.5548*** -0.1071*** -0.0488*** 0.9847*** 0.0571*** 

FLRY3 eGARCH 0.0007** 0.4893*** -0.5161*** -0.76** -0.0209 0.9037*** 0.1961*** 

GGBR4 GARCH -0.0003 0.5986 -0.6036 0 0.0579*** 0.9328***  

GOAU4 eGARCH -0.0025*** 0.998*** -0.9907*** -0.0684*** -0.0061 0.9902*** 0.137*** 

GOLL4 eGARCH 0.0047*** 0.9962*** -0.9844*** -0.8087*** 0.0018 0.873*** 0.3601*** 

HYPE3 eGARCH 0.0006 0.0352 0.001 -0.1352*** -0.0774*** 0.9837*** 0.0429*** 

IGTA3 eGARCH 0.001** -0.1949*** 0.0922 -0.2869*** -0.0241 0.9643*** 0.1309*** 

ITSA4 eGARCH 0.0012** -0.286** 0.2603** -0.2004*** -0.029 0.9747*** 0.1259*** 

ITUB4 eGARCH 0.0011** 0.5551*** -0.5987*** -0.1575*** -0.0237 0.98*** 0.1099*** 

JBSS3 eGARCH 0.0008 0.4708*** -0.5888*** -0.387*** -0.0799*** 0.9456*** 0.1335*** 

KLBN11 GARCH 0.0006 -0.0093 0.0343 0* 0.0853*** 0.8526***  

KROT3 eGARCH 0.0006 0.796*** -0.8072*** -0.1193*** -0.0546*** 0.9835*** 0.0958*** 

LAME4 eGARCH 0.0005 -0.7956*** 0.8442*** -0.2827*** -0.0671*** 0.9633*** 0.0917*** 

LREN3 eGARCH 0.0013** 0.4944*** -0.5638*** -0.0849*** -0.0388*** 0.9892*** 0.0373*** 

MGLU3 eGARCH 0.0019*** -0.7463*** 0.8043*** -0.7658*** -0.0493 0.8839*** 0.3969*** 

MRFG3 eGARCH -0.0001 0.4154*** -0.4594*** -0.4628*** -0.05* 0.9367*** 0.2454*** 

MRVE3 eGARCH 0.0009** -0.4515*** 0.3862*** -0.3531*** -0.0175 0.9545*** 0.1475*** 

MULT3 gjrGARCH 0.0007* 0.5848*** -0.6604*** 0** 0.0618** 0.8392*** 0.0718*** 

NATU3 eGARCH -0.0002 0.5236*** -0.4971*** -2.9957** 0.0679 0.6015*** 0.2117*** 

PCAR4 eGARCH 0 -0.1387*** 0.206*** -0.1409*** -0.042** 0.982*** 0.1145*** 

PETR3 eGARCH 0.0014* -0.336*** 0.2673*** -0.074*** -0.0129 0.9893*** 0.1361*** 

PETR4 eGARCH 0.0012* -0.2717*** 0.19*** -0.1351*** -0.0336** 0.9804*** 0.1459*** 

QUAL3 GARCH 0.0002 0.1995 -0.2575 0.0002*** 0.1295*** 0.5405***  

RADL3 eGARCH 0.0011** -0.0617 0.0765 -0.0599*** -0.0178** 0.9925*** 0.0435*** 

RENT3 gjrGARCH 0.0011** 0.5761*** -0.6296*** 0 0.0328** 0.9439*** 0.03*** 

SANB11 eGARCH 0.0013*** 0.4795*** -0.5546*** -0.136*** -0.0305** 0.9823*** 0.0719*** 

SBSP3 eGARCH 0.0003 0.3881 -0.4634 -0.0418*** -0.0338*** 0.9946*** 0.0295*** 

SMLS3 eGARCH 0.0014** -0.4596*** 0.436*** -0.4391*** -0.0135 0.9406*** 0.2572*** 

TAEE11 eGARCH 0.0006* 0.5121*** -0.5979*** -0.9475*** 0.0446 0.8855*** 0.251*** 

TIMP3 eGARCH 0.0002 0.2165** -0.318*** -0.0793*** -0.0458*** 0.9898*** 0.0431*** 

UGPA3 eGARCH 0.0001 0.3729*** -0.4336*** -0.0307*** -0.054*** 0.9963*** 0.0406*** 

USIM5 eGARCH 0.0005 -0.2446** 0.3065*** -0.1417*** -0.0058 0.9784*** 0.177*** 

VALE3 gjrGARCH 0.0008 -0.3778 0.4271 0 0.0649*** 0.9458*** -0.0286*** 

VIVT4 eGARCH 0.0004 0.613*** -0.6705*** -0.148*** -0.0039 0.9822*** 0.1068*** 

WEGE3 eGARCH 0.0009** 0.5075*** -0.5523*** -0.1232*** -0.0292** 0.985*** 0.0862*** 

Fonte: Elaborated by the author. 

   Note: The total number of observations is 1223 for each stock, considering only the database in the training sample. 
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Table 3 – Estimates of EVT parameters for standardized residuals in the training sample database 
 

TICKER ur ξr βr ul ξl βl 

ABEV3 1.1859 0.1049 0.4976 -1.2511 0.1459 0.5085 
B3SA3 1.2421 0.0277 0.5471 -1.1956 0.002 0.5812 

BBAS3 1.1714 -0.0877 0.6895 -1.1854 0.1449 0.4919 

BBDC3 1.2069 -0.1269 0.6929 -1.1797 0.1241 0.4957 

BBDC4 1.2591 0.0886 0.4591 -1.1604 0.1242 0.5385 

BBSE3 1.2994 -0.2728 0.6267 -1.2655 0.1119 0.4613 

BRAP4 1.2505 0.0431 0.4976 -1.2467 -0.1413 0.6014 

BRFS3 1.1396 0.0409 0.5893 -1.1516 0.1991 0.5016 

BRKM5 1.141 0.24 0.5706 -1.0674 0.2602 0.427 

BRML3 1.2797 -0.039 0.6113 -1.1916 0.1758 0.4412 

BTOW3 1.1543 -0.0148 0.6755 -1.1805 0.1427 0.4691 

CCRO3 1.2248 -0.0036 0.5014 -1.1984 0.1642 0.5277 

CIEL3 1.1916 -0.065 0.5681 -1.1827 0.0703 0.6075 

CMIG4 1.1533 0.0006 0.6401 -1.2035 0.1612 0.4753 

CSAN3 1.2486 -0.1308 0.6011 -1.212 0.0867 0.5176 

CSNA3 1.2305 -0.121 0.6848 -1.1933 0.0583 0.4821 

CVCB3 1.2888 -0.2379 0.6295 -1.1986 0.1435 0.4774 

CYRE3 1.2303 -0.049 0.5523 -1.1637 0.2098 0.503 

ECOR3 1.2637 -0.0996 0.5389 -1.191 0.115 0.5496 

EGIE3 1.2213 0.0733 0.5588 -1.2094 0.0885 0.506 

ELET3 1.1832 0.2313 0.5494 -1.123 0.0726 0.5148 

ELET6 1.1267 0.1181 0.6626 -1.1718 0.0401 0.5029 

EMBR3 1.1051 0.1498 0.5445 -1.1582 0.2435 0.5047 

ENBR3 1.2134 0.0842 0.5612 -1.1899 0.0373 0.5746 

EQTL3 1.179 -0.1351 0.587 -1.2376 -0.0983 0.6857 

ESTC3 1.1425 0.3422 0.3546 -1.1742 0.0146 0.6653 

FLRY3 1.2396 -0.0184 0.5939 -1.1847 0.2042 0.4419 

GGBR4 1.2141 -0.1618 0.6674 -1.1782 0.0617 0.5225 

GOAU4 1.2335 -0.125 0.5725 -1.2472 0.0941 0.489 

GOLL4 1.1323 0.232 0.5932 -1.1012 0.0889 0.4586 

HYPE3 1.181 0.0935 0.5507 -1.1848 0.2691 0.429 

IGTA3 1.225 -0.1374 0.6734 -1.1914 0.1936 0.441 

ITSA4 1.2599 -0.0423 0.5604 -1.1749 0.151 0.5077 

ITUB4 1.2069 -0.0672 0.6416 -1.217 0.1872 0.4396 

JBSS3 1.1279 0.1382 0.545 -1.0552 0.2881 0.513 

KLBN11 1.2286 -0.1354 0.6534 -1.2898 -0.0169 0.4505 

KROT3 1.2278 -0.0617 0.5753 -1.2235 0.1175 0.4874 

LAME4 1.1665 -0.0538 0.5978 -1.1779 0.1053 0.582 

LREN3 1.2433 0.0966 0.51 -1.1773 0.0038 0.5156 

MGLU3 1.0724 0.1865 0.6595 -1.0889 0.1778 0.4557 

MRFG3 1.2085 0.0629 0.6704 -1.1212 -0.0842 0.6014 

MRVE3 1.2189 -0.0005 0.5316 -1.2191 0.138 0.4877 

MULT3 1.2035 -0.1163 0.7339 -1.2038 0.2131 0.3851 

NATU3 1.1993 0.2089 0.4951 -1.169 0.1414 0.4637 

PCAR4 1.2249 0.0486 0.5376 -1.2177 0.1375 0.4728 

PETR3 1.1956 0.0012 0.5854 -1.2118 0.1717 0.4529 

PETR4 1.2019 -0.0909 0.622 -1.1883 0.1224 0.5299 

QUAL3 1.1508 -0.1115 0.5781 -1.1817 0.3478 0.467 

RADL3 1.237 -0.0154 0.5853 -1.2331 -0.2091 0.6127 

RENT3 1.2064 -0.2222 0.7158 -1.2217 0.0208 0.5296 

SANB11 1.1718 0.1536 0.5195 -1.1547 0.002 0.6281 

SBSP3 1.1504 0.0034 0.5586 -1.1592 0.1608 0.5966 

SMLS3 1.1664 -0.1113 0.554 -1.184 0.2987 0.509 

TAEE11 1.2207 -0.1116 0.5621 -1.2032 -0.183 0.743 

TIMP3 1.1976 0.1749 0.4765 -1.1999 0.1065 0.4999 

UGPA3 1.1687 -0.1585 0.6293 -1.2023 0.1029 0.5722 

USIM5 1.2164 -0.0095 0.6657 -1.1939 0.0164 0.5099 

VALE3 1.2388 -0.09 0.5838 -1.251 -0.2446 0.6721 

VIVT4 1.2004 0.2208 0.4445 -1.1927 0.1084 0.5231 

WEGE3 1.2795 -0.2171 0.6194 -1.2283 -0.0136 0.5591 

Fonte: Elaborated by the author. 

  Note: The total number of observations is 1223 for each stock, considering only the database in the training sample. 
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Sharpe Ratio (SR), Sharpe Ratio with Value at Risk (SR-VaR), Sharpe Ratio with Conditional 

Value at Risk (SR-CVaR), and Sortino Ratio (SoR). We repeat the entire procedure for each 

day in our out-of-sample period and perform ten portfolio allocations. For the weekly 

rebalancing, the same procedure is repeated, but forecasts are made five days ahead, which gives 

us ten more portfolio allocations. Figure 1 illustrates the portfolio’s accumulation of wealth with 

an initial investment of $ 1,000,000. The dashed red vertical line represents March 11, 2020 - a 

pivotal date in global affairs. On this day, the World Health Organization (WHO) officially 

declared the novel coronavirus (COVID-19) outbreak as a global pandemic. The placement of 

this marker highlights the relevant impact of this event on the financial scenario. 

As highlighted earlier, our primary objective is to secure a positive alpha on the 

Ibovespa Index. Consequently, we begin by presenting the portfolio returns in Table 4, 

comparing them to the benchmarks. In general, in daily rebalancing, R-vine performs better, 

and in weekly rebalancing, C-vine achieves better results. Following this, in Table 5, we 

conduct an in-depth analysis of the performance and risk metrics associated with these returns. 

In terms of cumulative returns, 19 out of 20 portfolios exhibited positive returns over 

the Ibovespa Index. However, when compared to the Markowitz portfolio, only 10 out of 20 

demonstrated comparable performance against this benchmark. Our focused analysis centers 

on these particular cases. Within the Daily Rebalancing strategy, only 4 out of 10 portfolios 

showcased an annualized return superior to the Markowitz daily rebalancing. Notably, the R-

vine’s Sharpe CVaR and Information Ratio, with 23.17% and 23.22% excess returns over the 

Markowitz, outperformed in this category. Similarly, the C-vine’s Sharpe VaR and Sharpe 

CVaR exhibited excess returns of 16.87% and 7.49%, respectively, over the Markowitz. 

Shifting to the Weekly Rebalancing strategy, 6 out of 10 portfolios outperformed the 

Markowitz weekly rebalancing, with returns ranging from a minimum of 12.80% over the 

benchmark to a maximum of 50.26%. This contrast can be attributed to the higher costs 

associated with the daily strategy. 

When we analyze returns before and after the Covid-19 pandemic, it becomes clear 

that portfolios rebalanced daily suffered a more pronounced disadvantage compared to their 

counterparts that employed weekly rebalancing. Despite this, daily rebalancing strategies, for 

the most part, have demonstrated a remarkable ability to quickly recover lost wealth. 

In the pursuit of identifying the optimal portfolio among various tested performance 

options, the portfolio manager carefully considers risks and other crucial metrics. Table 5 

reveals seven metrics for each portfolio. 
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Beta, a metric measuring the portfolio’s sensitivity to changes in the overall market, is 

a valuable tool for assessing systematic or market risk. It quantifies the portfolio’s relative 

volatility in comparison to a benchmark index, in this case, the Ibovespa Index. Interestingly, 

all ten daily portfolios exhibit a Beta close to zero but negative, suggesting that these strategies  

 

Figure 1 – Portfolio Allocations accumulation wealth for an initial investment of $1,000,000 
 

Fonte: Elaborated by the author. 

 
tend to move in the opposite direction to the Ibovespa Index. In contrast, the weekly strategies 

display a positive Beta, indicating that in bull markets, these strategies yield higher returns 

compared to the market. This difference can be explained by the higher returns daily volatility 

that occurs in a higher frequency rebalancing. 

Alpha, a key concept, provides insight into whether a portfolio has outperformed or 

underperformed its expected return based on its level of risk, as compared to the benchmark. 

Remarkably, all strategies, including the benchmark portfolios, achieve a positive Alpha over 

the Ibovespa Index. Comparatively, under the daily rebalancing, we observe that 4 out of 10 

alphas surpass the Markowitz portfolio, while under weekly rebalancing, 7 out of 10 portfolios 

exhibit higher alphas than the Markowitz portfolio. 
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Analyzing the annualized volatility, it becomes evident that the two daily Information 

Ratio portfolios exhibit the highest values within this strategy, surpassing the Ibovespa Index 

by a factor of two. A similar trend is observed in the weekly rebalancing, where these portfolios 

demonstrate volatility three times that of the Ibovespa Index. This helps elucidate the returns 

presented in Table 4 this criterion involves assuming a greater risk than its peers. As detailed in 

Appendix C, a closer look reveals that this strategy is more concentrated than the other 

portfolios. 

Table 4 – Portfolio Returns 
 

Vine-Copula Allocation criteria  Return (%)  

Daily Rebalancing  Cumulative Pre Covid Post Covid Annualized 
R-vine Sharpe 115.45 37.18 57.06 47.69 

R-vine Sharpe VaR 59.58 -5.94 69.67 26.8 

R-vine Sharpe CVaR 216.21 29.55 143.97 79.43 

R-vine Information Ratio 216.21 -23.15 311.47 79.48 

R-vine Sortino 126.88 24.94 81.59 51.63 

C-vine Sharpe 70.39 28.07 33.04 31.1 

C-vine Sharpe VaR 194.56 27.1 131.76 73.13 

C-vine Sharpe CVaR 163.98 22.8 114.97 63.75 

C-vine Information Ratio 30.97 -10.04 45.59 14.69 

C-vine Sortino 98.78 4.49 90.24 41.77 

Weekly Rebalancing      

R-vine Sharpe 93.47 43.24 35.07 42.45 

R-vine Sharpe VaR 95.7 30.93 49.48 43.33 

R-vine Sharpe CVaR 74.83 7.76 62.24 34.91 

R-vine Information Ratio 42.75 18.15 20.82 21.02 

R-vine Sortino 137.88 42.35 67.11 59.13 

C-vine Sharpe 172.61 71.25 59.19 71.19 

C-vine Sharpe VaR 202.13 83.15 64.96 80.89 

C-vine Sharpe CVaR 142.56 44.08 68.35 60.8 

C-vine Information Ratio 252.85 97.19 78.94 96.59 

C-vine Sortino 195.56 55.92 89.55 78.77 

Benchmarks      
 Ibovespa Index 35.42 11.5 21.45 16.55 
 Markowitz Daily 140.73 46.84 63.95 56.26 
 GMV Daily 29.4 22.89 5.3 13.99 
 Equal Weights Daily 58.69 -5.35 67.67 26.44 
 Markowitz Weekly 103.44 56.42 30.06 46.33 
 GMV Weekly 15.3 21.43 -5.05 7.93 

 Equal Weights Weekly 25.49 11.96 12.08 12.94 

     Fonte: Elaborated by the author. 

 
 

It’s crucial to highlight that this criterion also boasts the least favorable Maximum Drawdown 

metric under both rebalancing frequencies. This metric, indicating the maximum loss from peak 

to trough, underscores the downside risk associated with this strategy. 

In summary, while the high returns of Information Ratio under R-vine daily and C-

vine weekly suggest the potential for outperformance, the portfolio manager should carefully 

consider this against the backdrop of increased risk, concentration, and the less favorable 

Maximum Drawdown metric associated with this criterion. 
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While the Sharpe Ratio provides an overall assessment of performance, Sortino places 

specific emphasis on downside risk, aiming to assess the portfolio’s ability to mitigate losses. 

Thus, compared to the Sharpe Ratio criteria, the Sortino results for the daily R-vine strategy 

show a relatively low negative value for Beta, suggesting a negative correlation with the 

benchmark, and a smaller Maximum Drawdown compared to the strategy by Sharpe. This 

indicates that the R-vine strategy, although potentially underperforming in absolute terms, has 

a superior ability to protect against adverse market movements and limit downside risk. 

Likewise, Sortino’s results from the C-vine strategy mirror those from the R-vine approach. The 

negative Beta and lower Maximum Drawdown imply that the C-vine strategy is effective in 

managing downside risk, contributing to a favorable Sortino metric. 

Focusing on weekly rebalancing, Sortino’s results for the R-vine and C-vine strategies 

continue to demonstrate their resilience in mitigating downside risk. Positive values indicate 

overall positive risk-adjusted performance, with an emphasis on minimizing the impact of 

negative price movements. Here, both vine achieve a lower maximum drawdown than 

Markowitz Weekly, but greater volatility. 

By concentrating exclusively on downward volatility, the Sortino ratio is more 

sensitive to the portfolio’s ability to manage and minimize losses. This can lead to variations in 

the performance assessment compared to the Sharpe ratio. We can see this in the Maximum 

Drawdown, both daily Sortino portfolios had a Maximum Drawdown lower than the Sharpe 

Ratios, as well as in the weekly C-vine about the Sharpe Ratios portfolios. 

Additionally, following DeMiguel et al. (2009) we present the Turnover Ratio: 

 

 

In simpler terms, the equation measures the average percentage of the portfolio that is bought 

or sold during each period, offering insights into the trading activity and potential transaction 

costs associated with managing the portfolio. A higher turnover indicates more frequent 

changes in the portfolio, which may result in higher transaction costs and could impact the 

overall performance of the portfolio. On the other hand, lower turnover implies a more stable 

portfolio composition over time. For example, in the R-vine Sharpe strategy with daily 

rebalancing, the turnover is 2.63%. This means that, on average, about 2.63% of the total 

portfolio value is bought or sold each day to maintain the specified allocation criteria. 

As expected, all daily rebalanced portfolios had a higher turnover rate when compared 

to their weekly rebalanced pair, except for the GMV and Markowitz Benchmarks, and the R-

Vine IR portfolio. 
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Table 5 – Performance and Risk Analysis 
 

Vine-Copula Allocation criteria    Financial Metrics  

Daily Rebalancing  Beta Alpha Sharpe Ratio Max Drawdown (%) Volatility ann(%) Daily VaR (%) Turnover (%) 

R-vine Sharpe -0.1 0.47 1.28 -38.61 35.42 -3.49 2.63 

R-vine Sharpe VaR -0.06 0.36 0.74 -47.71 47.64 -4.8 2.79 

R-vine Sharpe CVaR -0.05 0.72 1.4 -42.17 30.51 -4.95 2.89 

R-vine Information Ratio -0.03 0.82 1.21 -63.26 67.72 -6.69 1.4 

R-vine Sortino -0.02 0.49 1.3 -37.98 37.47 -3.69 2.71 

C-vine Sharpe -0.09 0.35 0.94 -41.54 35.55 -3.55 2.66 

C-vine Sharpe VaR -0.11 0.69 1.35 -41.54 49.8 -4.89 2.85 

C-vine Sharpe CVaR -0.08 0.64 1.2 -41.68 52.13 -5.15 2.89 

C-vine Information Ratio -0.09 0.37 0.54 -59.79 64.79 -6.57 1.4 

C-vine Sortino -0.09 0.44 1.09 -37.46 38.9 -3.86 2.74 

Weekly Rebalancing 
        

R-vine Sharpe 0.38 1.56 3.17 -31.63 60.09 -5.47 2.37 

R-vine Sharpe VaR 0.42 1.8 2.38 -44.27 91.83 -8.65 2.19 

R-vine Sharpe CVaR 0.3 1.59 2.06 -39.1 90.22 -8.61 2.35 

R-vine Information Ratio 0.37 1.17 1.43 -53.77 104.69 -10.25 1.57 

R-vine Sortino 0.27 2.3 3.37 -32.7 75.31 -6.8 2.55 

C-vine Sharpe 0.38 2.48 4.47 -32.29 63.13 -5.42 2.37 

C-vine Sharpe VaR 0.34 2.86 4.26 -32.78 74.22 -6.44 2.26 

C-vine Sharpe CVaR 0.33 2.33 3.33 -23.22 78.66 -7.11 2.3 

C-vine Information Ratio 0.46 3.43 3.66 -39.91 104.83 -9.34 1.36 

C-vine Sortino 0.33 2.78 4.39 -31.17 70.09 -6.04 2.53 

Benchmarks 
        

 Ibovespa Index - - 0.58 -46.82 33.94 -3.44 - 
 Markowitz Daily -0.1 0.52 1.58 -31.93 31.42 -3.06 0.09 
 GMV Daily -0.06 0.17 0.67 -32.09 24.02 -2.42 0.02 
 Equal Weights Daily -0.08 0.32 0.81 -46.16 37.7 -3.78 0 
 Markowitz Weekly 0.46 1.63 3.37 -34.35 60.54 -5.46 0.20 
 GMV Weekly 0.5 0.04 1.02 -36.24 48.32 -4.81 0.04 

 Equal Weights Weekly 0.76 0.18 1.21 -49.71 71.29 -7.05 0 

      Fonte: Elaborated by the author. 
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4 CONCLUSIONS 

 

This study employs ARMA-GARCH-EVT-Vinecopula models to explore the potential 

advantages of portfolio optimization. We aim to provide portfolio managers with tools to seek 

superior performance in market indices, with a specific focus on the Brazilian stock market 

under two rebalancing frequencies. 

In terms of wealth accumulation, our findings are surprising. For the years 2019 and 

2020, our years of analysis, all 20 proposed portfolios managed to achieve a positive Alpha 

over the Ibovespa Index. Surprisingly, 12 out of 20 achieve more than 100% cumulative returns 

out of the sample, considering B3’s transaction costs. Furthermore, 17 of the 20 portfolios also 

had a Sharpe ratio above 1.00. 

Furthermore, our work encompasses a comprehensive quantitative approach. Not only 

allowing greater flexibility in adapting the EVT and GARCH parameters but also allowing 

adjustments to the GARCH specification throughout the out-of-sample period. This innovation 

increases the accuracy of tuning each asset in each interaction. Notably, we incorporate 

Vinecop- ulas to capture the tail dependence between data points, a departure from the 

traditional approach found in the literature, which primarily uses copulas. 

Looking ahead, future research should strive to further refine the EVT methodology, 

techniques such as the mean excess function (MEF) and Hill plots could be explored to increase 

the accuracy of tail risk estimation. Furthermore, expanding the procedure to cover portfolios 

with lower risks, more diversified, and other rebalancing frequencies can incorporate better 

efficiency gains in terms of transaction costs and risk exposure. Allocation criteria such as 

GMV, Min VaR, and Min CVaR can be considered. 
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APPENDIX B - IBOVESPA COMPOSITION AND GARCH INITIAL TEST 

Table 1 – Ibovespa composition (%) in 2019 and 2020 
 

TICKER 1st Monday 

of Jan,2019 

1st Monday 

of May,2019 

1st Monday 

of Set,2019 

1st Monday 

of Jan, 2020 

1st Monday 

of May,2020 

1st Monday 

of Set,2020 

ABEV3 4.8429 4.8909 4.6512 3.9575 3.3953 4.6512 

AZUL4 - 0.718 0.854 0.8662 0.3798 0.854 

B3SA3 3.8457 4.3772 5.175 4.3129 5.4053 5.175 

BBAS3 4.3736 4.1909 3.5251 3.6629 2.7798 3.5251 

BBDC3 1.6034 1.8037 1.9449 1.8307 1.5131 1.9449 

BBDC4 8.5709 8.7545 7.3002 6.9859 5.6118 7.3002 

BBSE3 1.2815 1.183 1.2549 1.2167 1.2261 1.2549 

BEEF3 - - - - 0.2186 - 

BPAC11 - - 0.6503 0.7186 0.5849 0.6503 

BRAP4 0.4772 0.4381 0.3611 0.4118 0.456 0.3611 

BRDT3 0.6019 0.4801 1.1994 1.0698 0.9778 1.1994 

BRFS3 1.1711 1.566 1.77 1.4021 1.0819 1.77 

BRKM5 0.856 0.7665 0.4271 0.4039 0.3847 0.4271 

BRML3 0.7585 0.6678 0.6476 0.7528 0.5822 0.6476 

BTOW3 0.4742 0.4019 0.5176 0.6015 0.9812 0.5176 

CCRO3 0.9199 0.84 1.0369 1.0079 0.9475 1.0369 

CIEL3 0.7647 0.5187 0.4957 0.4549 0.3122 0.4957 

CMIG4 0.9046 0.8544 0.8186 0.6401 0.6324 0.8186 

COGN3 - - - 0.8753 0.6969 - 

CPFE3 - - - - 0.3399 - 

CRFB3 - - - 0.4543 0.5293 - 

CSAN3 0.3778 0.4424 0.4443 0.5392 0.6366 0.4443 

CSNA3 0.4135 0.5663 0.5276 0.4503 0.3958 0.5276 

CVCB3 0.5849 0.5255 0.4474 0.3084 0.1382 0.4474 

CYRE3 0.2809 0.2752 0.3797 0.4156 0.3076 0.3797 

ECOR3 0.1307 0.1011 0.1213 0.133 0.1234 0.1213 

EGIE3 0.6092 0.6817 0.6555 0.6407 0.6855 0.6555 

ELET3 0.5541 0.5457 0.7085 0.5872 0.597 0.7085 

ELET6 0.5165 0.4868 0.6067 0.4188 0.4595 0.6067 

EMBR3 1.0271 0.9023 0.7554 0.7221 0.4379 0.7554 

ENBR3 0.2958 0.3253 0.3396 0.3131 0.3453 0.3396 

ENGI11 - - - - 0.7534 - 

EQTL3 1.0403 0.998 1.0856 1.1302 1.2733 1.0856 

ESTC3 0.5092 0.4987 - - - - 

EZTC3 - - - - - - 

FLRY3 0.435 0.3981 0.4187 0.44 0.4784 0.4187 

GGBR4 1.0307 0.8836 0.7554 1.0111 0.8325 0.7554 

GNDI3 - - 1.1704 1.6088 1.7276 1.1704 

GOAU4 0.2823 0.2454 0.2134 0.309 0.2347 0.2134 

GOLL4 0.2239 0.1981 0.2556 0.2323 0.1148 0.2556 

HAPV3 - - - 0.7212 0.7827 - 

HGTX3 - - - 0.2124 0.1299 - 

HYPE3 0.8403 0.7005 0.7498 0.7198 0.8149 0.7498 

IGTA3 0.2436 0.2085 0.2286 0.228 0.1967 0.2286 

IRBR3 - 0.8477 1.9263 1.7721 0.6489 1.9263 
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Table 2 – (Continued) Ibovespa composition (%) in 2019 and 2020 
 

TICKER 1st Monday 

of Jan,2019 

1st Monday 

of May,2019 

1st Monday 

of Set,2019 

1st Monday 

of Jan, 2020 

1st Monday 

of May,2020 

1st Monday 

of Set,2020 

ITSA4 3.8466 3.3235 3.1539 3.0552 2.7812 3.1539 

ITUB4 10.8017 9.9977 9.1946 8.5731 7.4144 9.1946 

JBSS3 1.3543 2.0676 2.7474 2.1404 2.6567 2.7474 

KLBN11 0.6762 0.6177 0.5493 0.5945 0.7811 0.5493 

KROT3 0.9272 0.8723 0.8638 - - 0.8638 

LAME4 0.892 0.6776 0.7371 0.8986 1.1911 0.7371 

LOGG3 0.0237 - - - - - 

LREN3 1.9686 2.0195 2.2591 2.1451 2.0731 2.2591 

MGLU3 0.8117 0.8337 1.1502 1.5557 2.2618 1.1502 

MRFG3 0.1539 0.1799 0.1843 0.2091 0.3736 0.1843 

MRVE3 0.2447 0.2654 0.33 0.3093 0.307 0.33 

MULT3 0.4427 0.4063 0.4017 0.4359 0.3882 0.4017 

NATU3 0.5464 0.5419 0.6605 - - 0.6605 

NTCO3 - - - 0.6878 1.6394 - 

PCAR3 - - - - 0.7067 - 

PCAR4 0.8681 0.9316 0.7832 0.6746 - 0.7832 

PETR3 5.0156 5.0323 4.7697 4.2012 3.783 4.7697 

PETR4 7.2084 7.3107 6.5927 6.6176 5.6103 6.5927 

QUAL3 0.2157 0.2578 0.3659 0.54 0.5018 0.3659 

RADL3 0.8157 0.9194 1.1242 1.1527 1.4945 1.1242 

RAIL3 1.291 1.237 1.3319 1.2985 1.434 1.3319 

RENT3 1.0165 1.2637 1.5089 1.3185 1.3947 1.5089 

SANB11 1.1821 1.0493 0.8825 0.8512 0.6725 0.8825 

SBSP3 0.7782 0.8963 1.0053 0.9727 0.937 1.0053 

SMLS3 0.1736 0.1775 0.1245 0.1124 - 0.1245 

SULA11 - - - 0.8691 0.8577 - 

SUZB3 1.457 1.9841 1.2073 1.4186 1.967 1.2073 

TAEE11 0.3713 0.3576 0.3512 0.3254 0.4133 0.3512 

TIMP3 0.6513 0.5827 0.5682 0.6135 0.7087 0.5682 

TOTS3 - - - 0.4565 0.5469 - 

UGPA3 1.927 1.4465 1.0191 1.32 1.0832 1.0191 

USIM5 0.3492 0.2863 0.232 0.2371 0.1696 0.232 

VALE3 10.7745 9.9707 8.2044 8.1892 10.1549 8.2044 

VIVT4 1.3272 1.198 1.2743 1.152 1.3031 1.2743 

VVAR3 0.1161 0.1419 0.5072 0.6337 0.7238 0.5072 

WEGE3 0.927 0.8679 0.9532 1.2389 1.893 0.9532 

YDUQ3 - - 0.5392 0.6594 0.6254 0.5392 

Fonte: UP2DATA B3. 
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Table 3 – AIC and BIC results 
 

  AIC   BIC  

TICKER sGARCH eGARCH gjrGARCH sGARCH eGARCH gjrGARCH 

ABEV3 -5.8984 -5.9099 -5.9026 -5.865 -5.8723 -5.865 

B3SA3 -4.9464 -4.9434 -4.9448 -4.913 -4.9058 -4.9072 

BBAS3 -4.3758 -4.3817 -4.3752 -4.3424 -4.3441 -4.3376 

BBDC3 -4.9676 -4.9678 -4.966 -4.9342 -4.9302 -4.9284 

BBDC4 -4.9404 -4.9456 -4.9394 -4.907 -4.908 -4.9018 

BBSE3 -5.1323 -5.1313 -5.1307 -5.0989 -5.0937 -5.0931 

BRAP4 -4.3096 -4.306 -4.3081 -4.2762 -4.2684 -4.2705 

BRFS3 -5.1526 -5.1724 -5.1639 -5.1192 -5.1348 -5.1263 

BRKM5 -4.7763 -4.7823 -4.7855 -4.7429 -4.7447 -4.7479 

BRML3 -4.8301 -4.8316 -4.8302 -4.7967 -4.794 -4.7926 

BTOW3 -3.9812 -3.9835 -3.9797 -3.9478 -3.9459 -3.9421 

CCRO3 -4.7918 -4.7983 -4.7922 -4.7584 -4.7608 -4.7546 

CIEL3 -5.0746 -5.0874 -5.083 -5.0412 -5.0498 -5.0454 

CMIG4 -4.302 -4.2978 -4.3017 -4.2686 -4.2602 -4.2641 

CSAN3 -4.8913 -4.8902 -4.8902 -4.8579 -4.8526 -4.8526 

CSNA3 -3.7716 -3.7727 -3.77 -3.7382 -3.7351 -3.7324 

CVCB3 -4.8628 -4.8612 -4.863 -4.8294 -4.8236 -4.8254 

CYRE3 -4.9012 -4.9004 -4.9002 -4.8678 -4.8628 -4.8626 

ECOR3 -4.6039 -4.6139 -4.6096 -4.5704 -4.5763 -4.572 

EGIE3 -5.6614 -5.662 -5.6606 -5.628 -5.6244 -5.623 

ELET3 -4.003 -4.0082 -4.0019 -3.9696 -3.9706 -3.9643 

ELET6 -4.2048 -4.2133 -4.2067 -4.1714 -4.1757 -4.1691 

EMBR3 -5.046 -5.0506 -5.0444 -5.0126 -5.013 -5.0068 

ENBR3 -5.1522 -5.1575 -5.1517 -5.1187 -5.1199 -5.1141 

EQTL3 -5.6436 -5.6608 -5.6569 -5.6102 -5.6232 -5.6193 

ESTC3 -4.2742 -4.2823 -4.282 -4.2408 -4.2447 -4.2444 

FLRY3 -5.1162 -5.1211 -5.0988 -5.0828 -5.0835 -5.0612 

GGBR4 -4.2907 -4.2876 -4.2891 -4.2573 -4.25 -4.2515 

GOAU4 -4.0615 -4.062 -4.0603 -4.0281 -4.0244 -4.0227 

GOLL4 -3.6514 -3.6531 -3.6498 -3.618 -3.6155 -3.6122 

HYPE3 -5.4489 -5.4841 -5.4636 -5.4154 -5.4465 -5.426 

IGTA3 -5.2324 -5.2336 -5.2308 -5.199 -5.196 -5.1932 

ITSA4 -5.1391 -5.1405 -5.1384 -5.1057 -5.1029 -5.1008 

ITUB4 -5.1035 -5.1088 -5.1027 -5.0701 -5.0712 -5.0651 

JBSS3 -4.3535 -4.3657 -4.3641 -4.3201 -4.3281 -4.3265 

KLBN11 -5.3531 -5.3505 -5.3527 -5.3197 -5.3129 -5.3151 

KROT3 -4.3926 -4.4048 -4.3985 -4.3592 -4.3672 -4.3609 

LAME4 -4.9212 -4.9328 -4.9258 -4.8878 -4.8952 -4.8882 

LREN3 -5.0672 -5.0769 -5.0742 -5.0337 -5.0393 -5.0366 

MGLU3 -3.9241 -3.9301 -3.9255 -3.8907 -3.8925 -3.8879 

MRFG3 -4.5366 -4.5472 -4.541 -4.5032 -4.5096 -4.5034 

MRVE3 -4.9094 -4.9146 -4.9077 -4.876 -4.877 -4.8702 

MULT3 -5.2804 -5.279 -5.2819 -5.247 -5.2414 -5.2443 

NATU3 -4.7149 -4.7158 -4.7147 -4.6815 -4.6782 -4.6771 

PCAR4 -5.0449 -5.0558 -5.0466 -5.0115 -5.0182 -5.009 

PETR3 -4.1667 -4.172 -4.1652 -4.1333 -4.1344 -4.1276 

PETR4 -4.0928 -4.1008 -4.0941 -4.0594 -4.0632 -4.0565 

QUAL3 -4.6299 -4.6282 -4.6288 -4.5965 -4.5906 -4.5912 

RADL3 -5.1989 -5.2012 -5.2006 -5.1655 -5.1636 -5.163 

RENT3 -4.8615 -4.8619 -4.8621 -4.8281 -4.8243 -4.8245 

SANB11 -4.9016 -4.9118 -4.9041 -4.8682 -4.8742 -4.8665 

SBSP3 -4.8682 -4.8748 -4.8662 -4.8347 -4.8372 -4.8286 

SMLS3 -4.5961 -4.6026 -4.5947 -4.5627 -4.565 -4.5571 

TAEE11 -5.4547 -5.457 -5.4544 -5.4213 -5.4194 -5.4168 

TIMP3 -4.9704 -4.979 -4.9782 -4.937 -4.9414 -4.9406 

UGPA3 -5.4773 -5.485 -5.4811 -5.4439 -5.4475 -5.4435 

USIM5 -3.7901 -3.7938 -3.7885 -3.7567 -3.7562 -3.7509 

VALE3 -4.3853 -4.3828 -4.3858 -4.3519 -4.3452 -4.3482 

VIVT4 -5.5299 -5.5353 -5.5283 -5.4965 -5.4977 -5.4907 

WEGE3 -5.3617 -5.362 -5.3618 -5.3283 -5.3244 -5.3242 

Note: The total number of observations is 1223 for each stock, considering only the database in the training sample. 
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APPENDIX C - PORTFOLIOS WEIGHT HISTORICAL 

 
3.2 Daily Rebalancing 

Figure 2 – Rvine - Sharpe VaR 
 
 

 

Fonte: Elaborated by the author. 

 

Figure 3 – Rvine - Sharpe CVaR 
 
 

Fonte: Elaborated by the author. 
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Figure 4 – Rvine - Information Ratio 
 
 

 

Fonte: Elaborated by the author. 

 

Figure 5 – Rvine - Sharpe Ratio 
 
 

Fonte: Elaborated by the author. 
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Figure 6 – Rvine - Sortino 
 
 

 

Fonte: Elaborated by the author. 

 

Figure 7 – Cvine - Sharpe VaR 
 
 

Fonte: Elaborated by the author. 
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Figure 8 – Cvine - Sharpe CVaR 
 
 

 

Fonte: Elaborated by the author. 

 

Figure 9 – Cvine - Information Ratio 
 
 

Fonte: Elaborated by the author. 
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Figure 10 – Cvine - Sharpe Ratio 
 
 

 

Fonte: Elaborated by the author. 

 

Figure 11 – Cvine - Sortino 
 
 

Fonte: Elaborated by the author. 
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3.3 Weekly Rebalancing 

Figure 12 – Rvine - Sharpe VaR 
 
 

 

Fonte: Elaborated by the author. 

 

Figure 13 – Rvine - Sharpe CVaR 
 
 

Fonte: Elaborated by the author. 



55 
 

 

 

 

 

 

Figure 14 – Rvine - Information Ratio 
 
 

 

Fonte: Elaborated by the author. 

 

 

 

 

 

 

 

Figure 15 – Rvine - Sharpe Ratio 
 
 

Fonte: Elaborated by the author. 
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Figure 16 – Rvine - Sortino 
 
 

 

Fonte: Elaborated by the author. 

 

 

 

 

Figure 17 – Cvine - Sharpe VaR 
 
 

Fonte: Elaborated by the author. 
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Figure 18 – Cvine - Sharpe CVaR 
 
 

Fonte: Elaborated by the author. 

 

 

 

 

 

 

Figure 19 – Cvine - Information Ratio 
 
 

Fonte: Elaborated by the author. 
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Figure 20 – Cvine - Sharpe Ratio 
 
 

Fonte: Elaborated by the author. 

 

 

 

 

 

Figure 21 – Cvine - Sortino 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Elaborated by the author. 
 


